

Insights from geospatial analysis of detectable HIV-1 viral loads and drug resistance amid dolutegravir rollout in KwaZulu-Natal, South Africa

Lilishia Gounder, MD, PhD (Clinical Virologist)

Outline

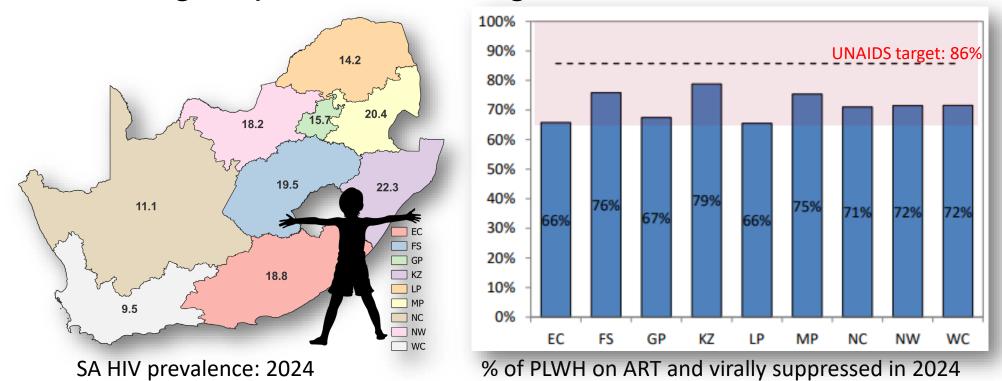
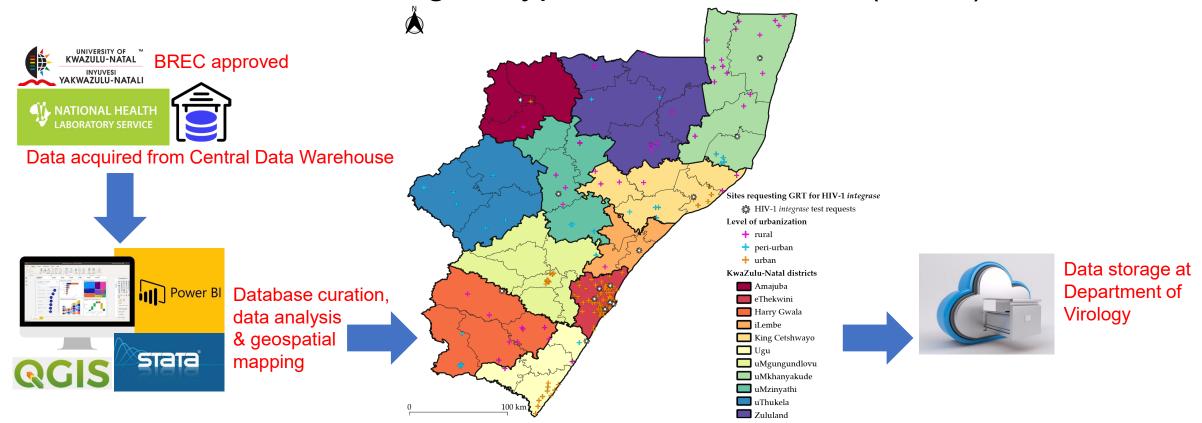

- Background and Research Problem
- Research Aims and Objectives
- Methods
- Results
- Key Messages

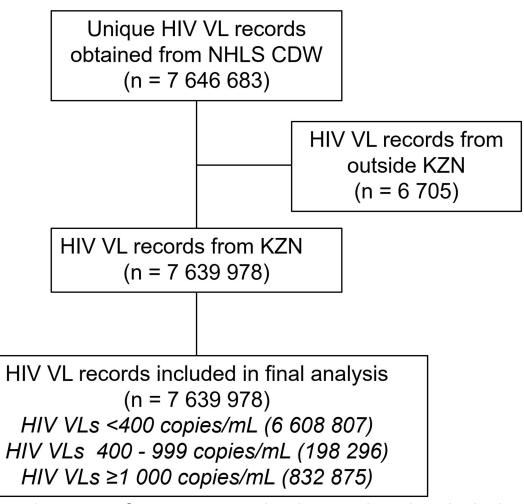
Photo by Lilishia Gounder on Unsplash

Background and Research Problem

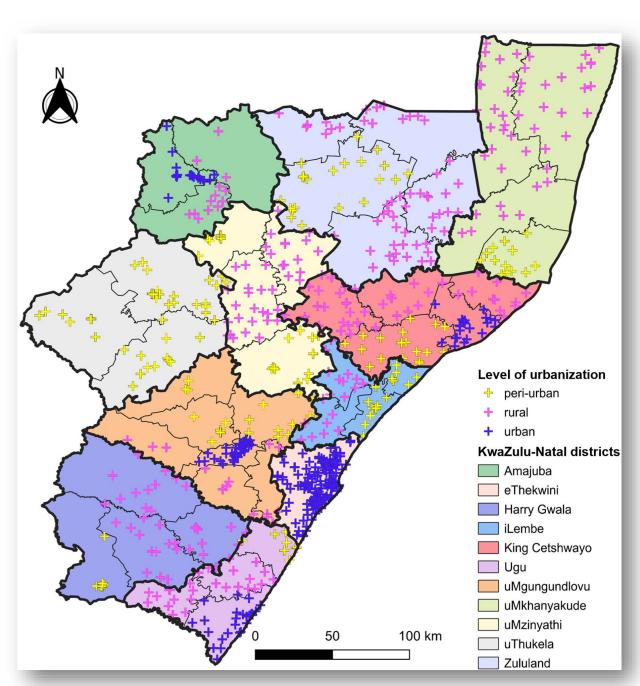
- In 2024, 20% of all people living with HIV (PLWH) were in South Africa.
- Detectable viraemia ↑ risk of HIV drug resistance (HIVDR).
- Real-time geospatial monitoring of HIVDR is limited in our setting.

per province in South Africa


Research aims and objectives


- Describe spatiotemporal changes in HIV viral loads (VLs) and HIVDR in KwaZulu-Natal (KZN), the epicentre of the HIV epidemic in South Africa, amid transition to dolutegravir-based regimens.
- Use geospatial analysis to advise on use of health resources for targeted HIV prevention and treatment.

Methods


 VL and HIVDR data was obtained from National Health Laboratory Service Central Data Warehouse, for the period January 2018 - June 2022, for all adult PLWH attending public-sector healthcare facilities in KZN who had VLs and genotypic resistance tests (GRTs) done.

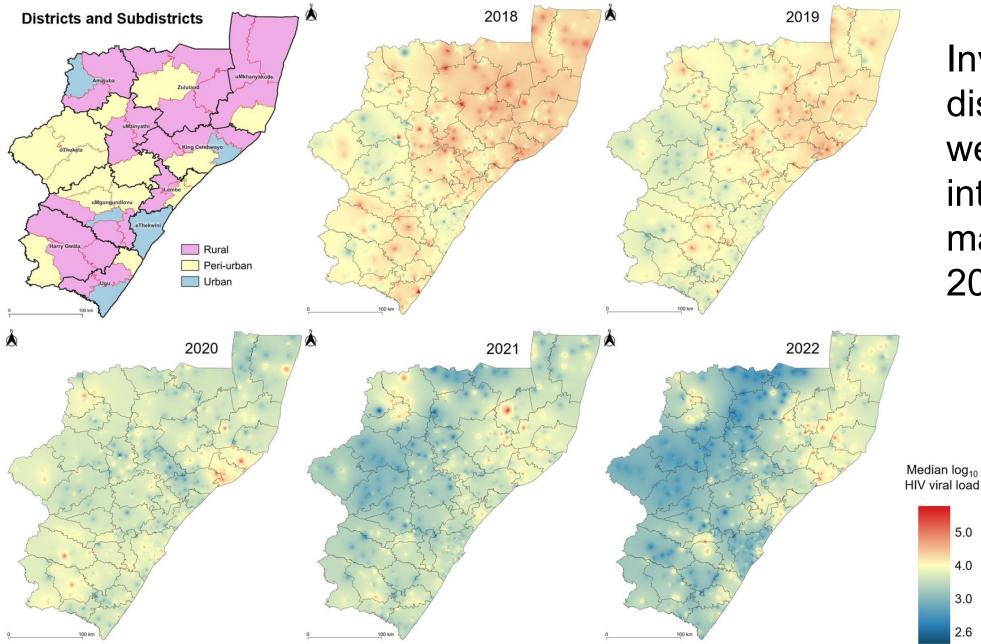
Flow diagram of HIV VL records obtained and included in final analysis.

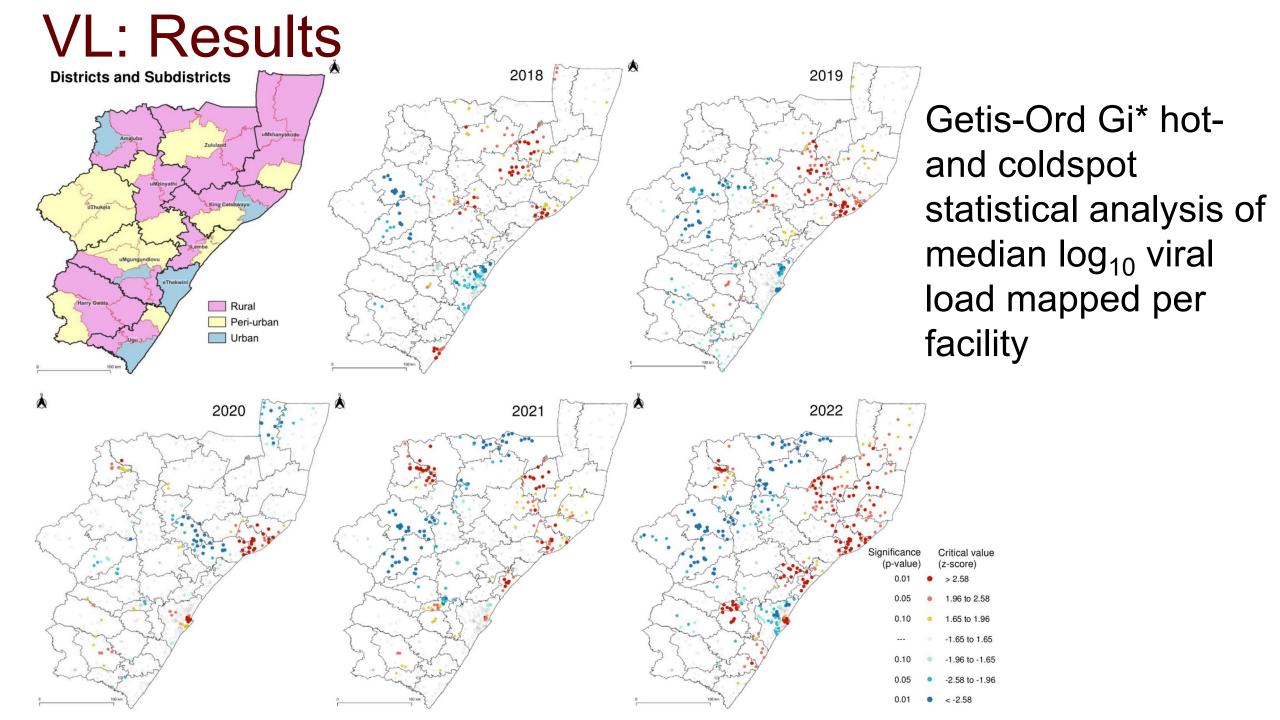
CDW, central data warehouse; HIV VL, HIV viral load; KZN, KwaZulu-Natal; mL, millilitre; NHLS, National Health Laboratory Service.


HIVVLs: 86.5% <400 c/mL; 2.6% 400-999 c/mL; 10.9% ≥1000 c/mL

Patient characteristics

	AII	VL <400 c/mL	VL 400-999 c/mL	VL ≥1000 c/mL
	n=7 639 978 (%)	n=6 608 807 (%)	n=198 296 (%)	n=832 875 (%)
Characteristics				
Femalea	5 209 487 (68)	4 579 540 (88)	128 476 (2)	501 471 (10)
Malea	2 204 485 (29)	1 834 681 (83)	63 996 (3)	305 808 (14)
Median age ^b (IQR)	37 (29-45)	37 (30-46)	36 (27-44)	33 (24-41)
<5	37 833 (0.5)	21 262 (56.2)	2057 (5.4)	14 514 (38.4)
5-14	222 266 (2.9)	146 383 (65.9)	12 055 (5.4)	63 828 (28.7)
15-24	710 242 (9.3)	539 469 (75.9)	25 468 (3.6)	145 305 (20.5)
25-49	5 404 631 (70.7)	4 750 906 (87.9)	129 445 (2.4)	524 280 (9.7)
>50	1 210 106 (15.8)	1 105 594 (91.4)	27 686 (2.3)	76 826 (6.3)
Outpatients ^c	7 273 492 (95.2)	6 336 424 (87.1)	186 822 (2.6)	750 246 (10.3)
Inpatients ^c	333 743 (4.4)	242 672 (72.7)	10 949 (3.3)	80 122 (24)
Rural ^d	1 943 486 (25)	1 674 192 (86.1)	49 834 (2.6)	219 460 (11.3)
Peri-urband	1 755 258 (23)	1 499 314 (85.4)	53 172 (3)	202 772 (11.6)
Urban ^d	3 941 234 (52)	3 435 301 (87.2)	95 290 (2.4)	410 643 (10.4)


c/mL copies per millilitre, IQR interquartile range, VL viral load; a 226 006 (3%) missing data for sex, b 54 900 (0.7%) missing data for age, c 32 743 (0.4%) were institutionalized, d level of urbanization obtained from annual reports and integrated development plans for individual subdistricts



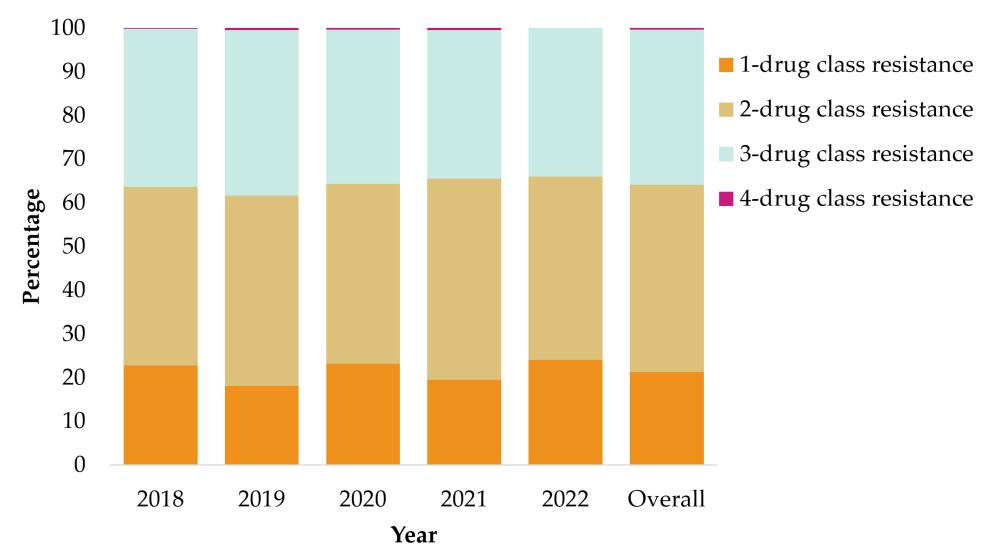
Trend analysis of detectable HIV viral loads by year in KwaZulu-Natal province, South Africa

median log10 VLs \downarrow from 4.093 log₁₀ copies/mL (CI 4.087–4.100) in 2018 to 3.563 log₁₀ copies/mL (CI 3.553–3.572) in 2022, p<0.01

Inverse distance weighted interpolation maps from 2018 to 2022

VL: Key Messages

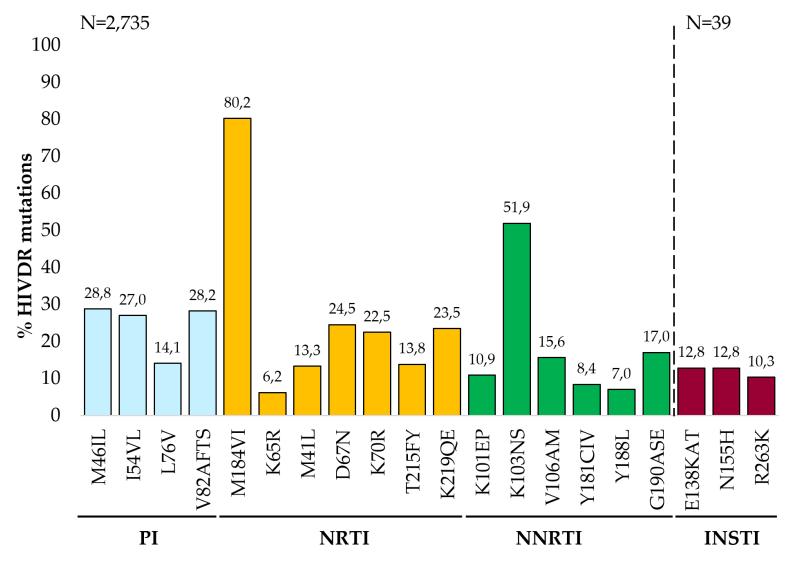
- Upward trend in the proportion of low-level viraemia could compromise DTG-based ART. Need to closely monitor low-level viraemia in PLWH.
- Geospatial analysis showed northern and coastal districts had higher HIVVLs – targeted interventions to support existing treatment programmes.
- Emerging hotspots amid DTG rollout temporary disruptions in HIV treatment services during COVID-19 pandemic. Need prospective geospatial studies to assess if hotspots were related to pandemic, or trend continues.
- Limitations: facility-based VLs, testing practices differ, lab-based—no clinical history.
- Urgent need to develop systems that collect locally relevant data, to create geospatial models that can be accurately applied to the HIV epidemic.


HIVDR: Results

Patient characteristics

	All; n=3,133 (100.00%)	No HIVDR; n=398 (12.70%)	HIVDR; n=2,735 (87.30%)
Characteristics			
Femalea	1,982 (63.26%)	266 (13.42%)	1,716 (86.58%)
Malea	1,126 (35.94%)	130 (11.55%)	996 (88.45%)
Median age (IQR)	39 (30-46)	36 (22-43)	39 (32-46)
18-29	750 (23.94%)	156 (20.80%)	594 (79.20%)
30-59	2,284 (72.90%)	237 (10.38%)	2,047 (89.62%)
≥60	99 (3.16%)	5 (5.05%)	94 (94.95%)
ARV drug regimen			
LPV/r or ATV/r- based	2,830 (90.33%)	362 (12.79%)	2,468 (87.21%)
DRV/r-based ^b	30 (0.96%)	1 (3.33%)	29 (96.67%)
RAL-based ^c	14 (0.45%)	1 (7.14%)	13 (92.86%)
DTG-based ^d	46 (1.47%)	8 (17.39%)	38 (82.61%)
NNRTI-based ^e	36 (1.15%)	5 (13.89%)	31 (86.11%)
Not documented	177 (5.65%)	21 (11.86%)	156 (88.14%)

ARV, antiretroviral; ATV/r, ritonavir-boosted atazanavir; DRV/r, ritonavir-boosted darunavir; DTG, dolutegravir; HIVDR, human immunodeficiency virus drug resistance; INSTI, integrase strand transfer inhibitor; IQR, interquartile range; LPV/r, ritonavir-boosted lopinavir; NNRTI, non-nucleoside reverse transcriptase inhibitor; RAL, raltegravir; aNot documented in 25 genotypes; bEtravirine included in 4 regimens containing ritonavir-boosted darunavir; Darunavir included in 9 regimens; dDarunavir included in 10 regimens; eEtravirine included in 1 NNRTI-based regimen


HIVDR: Results

Patterns of antiretroviral drug class resistance

Patterns of antiretroviral drug class resistance observed in 2,735 genotypes with HIVDR obtained from KwaZulu-Natal province, South Africa. Please note that 41 genotypes included HIV-1 integrase testing, of which only 9 met the definition for 4-drug class resistance.

HIVDR: Results

Specific mutations detected in 2,735 genotypes with HIVDR

Mutations shown on the horizontal axis include "major" mutations observed in >6% of the genotypes with HIV-1 drug resistance, "major" as defined by Stanford HIV Drug Resistance Database or 2022 edition IAS-USA drug resistance mutations list. HIVDR, HIV-1 drug resistance; INSTI, integrase strand transfer inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; PI, protease inhibitor.

HIVDR: Results Districts and Subdistricts DTG* **TDF** Rural Peri-urban Urban **(B)** (A) LPV/r **EFV ETR** Level of drug susceptibility HLR IR LLR

Antiretroviral drug susceptibility levels across KwaZulu-Natal

Districts and subdistricts are categorized by: (A) level of urbanization. Inverse distance weighted interpolation maps cumulatively reflect the drug susceptibilities for: (B) TDF, tenofovir; (C) DTG, dolutegravir; (D) LPV/r, lopinavir with boosted ritonavir; (E) EFV, efavirenz and (F) ETR, etravirine. Spectral colour change from blue to red reflects the drug susceptibility level as follows: S, susceptible; PLLR, potential low-level resistance; LLR, low-level resistance; IR, intermediate resistance; HLR, high-level resistance.

PLLR

HIVDR: Key Messages

- Temporal trends of HIVDR similar, with dual- or triple-class resistance observed in 4 out of every 5 patients.
- Of 26 patients on DTG with an INSTI genotype, ~35% (9/26) had DTGassociated resistance mutations.
- Higher levels of HIVDR particularly in northern rural KZN, highlighting the need for targeted intensified HIV-1 treatment monitoring.
- This study serves as a proof of concept that geospatial analysis could potentially be used for data-driven public health decision making.
- Population-level analyses of impact of specific mutations were limited, (<2% of patients on INSTI-based regimens) - need to assess current prevalence of HIVDR to determine programmatic outcomes.

Acknowledgements

Co-investigators:

Andrew Tomita, Richard Lessells, Sandrini Moodley, Justen Manasa, Sikhulile Moyo, Frank Tanser, Kogieleum Naidoo, Aabida Khan, Melendhran Pillay, Sontaga C. Manyana, Subitha Govender, Kerri-Lee Francois, Pravi Moodley, Nokukhanya Msomi, Kerusha Govender, Raveen Parboosing, and **Benjamin Chimukangara**