

## **HIV and the Liver**

#### Amir M. Mohareb, MD

Massachusetts General Hospital Harvard Medical School



AWACC 2023 – Durban, South Africa 20 October 2023



## No financial disclosures or conflicts of interest.

Grant funding National Institutes of Health (US) K01-AI66126 Harvard University Center for AIDS Research P30 AI060354

### Outline

- 1. Viral Hepatitis Coinfections
- 2. Metabolic Liver Disease and HIV
- 3. Hepatocellular carcinoma (HCC) and HIV
- 4. ART and PrEP in People with Hepatitis B

### Outline

- 1. Viral Hepatitis Coinfections
- 2. Metabolic Liver Disease and HIV
- 3. Hepatocellular carcinoma (HCC) and HIV
- 4. ART and PrEP in People with Hepatitis B

Exam: thrush, cervical lymphadenopathy, splenomegaly

Exam: thrush, cervical lymphadenopathy, splenomegaly

Labs: CD4 88, HIV VL >650,000; Creatinine normal; ALT 122, AST 98, Bilirubin 1.4mg/dL (24µmol/L), WBC 3300, Hematocrit 38%, Platelets 144

Exam: thrush, cervical lymphadenopathy, splenomegaly

Labs: CD4 88, HIV VL >650,000; Creatinine normal; **ALT 122, AST 98**, Bilirubin 1.4mg/dL (24µmol/L), WBC 3300, Hematocrit 38%, **Platelets 144** 

What are the next steps in testing and treatment?

## What is the most important next step in management?

- A. Test for viral hepatitis B and C
- B. Screen for alcohol use disorder
- C. No further testing. Recheck ALT/AST in 6 months
- D. Screen for steatosis (aka NAFLD or NASH) with imaging or biopsy
- E. Screen for cirrhosis with imaging or biopsy
- F. Multiple options above

# Elevated Aminotransferases in People Living with HIV

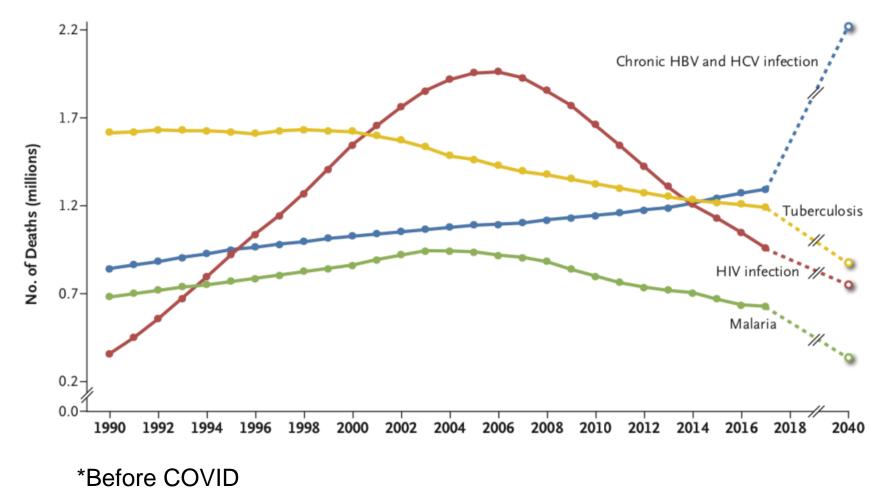
- 1. Screen for coinfections: hepatitis B and C are most important
- 2. Screen and counsel on alcohol use
- 3. Screen for medication and drug use
- 4. Screen for steatosis (NASH, NAFLD) with imaging
- 5. Consider other causes of liver disease: autoimmune hepatitis, etc.

Non-invasive estimates of fibrosis:

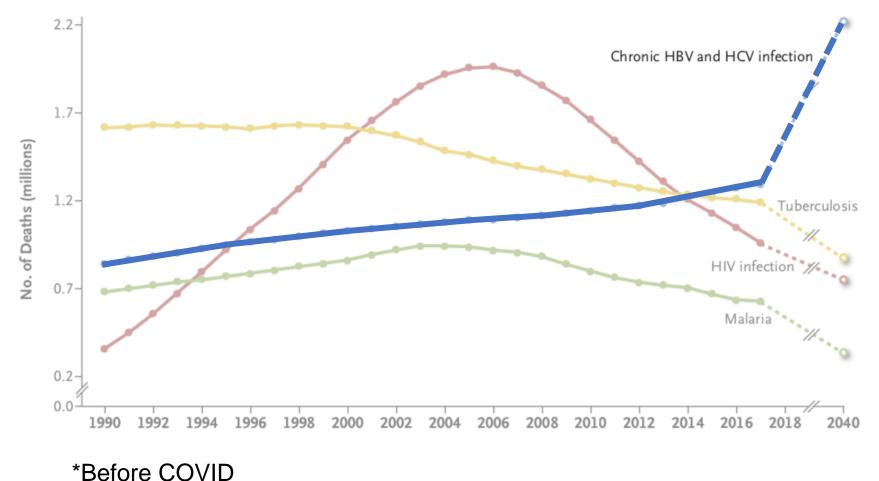
 $\mathbf{FIB-4} = \frac{\operatorname{Age} x \operatorname{AST}}{\operatorname{Platelets} x \sqrt{\operatorname{ALT}}}$ 

\*Best when age 35-65yo

$$\mathbf{APRI} = \frac{\text{AST/ULN}_{\text{AST}}}{\text{Platelets}} x \ 100$$

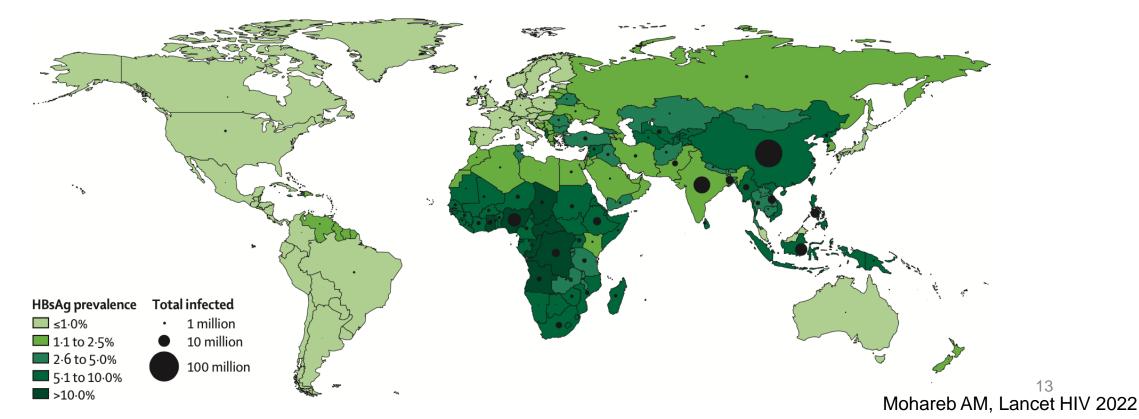

Exam: thrush, cervical lymphadenopathy, splenomegaly

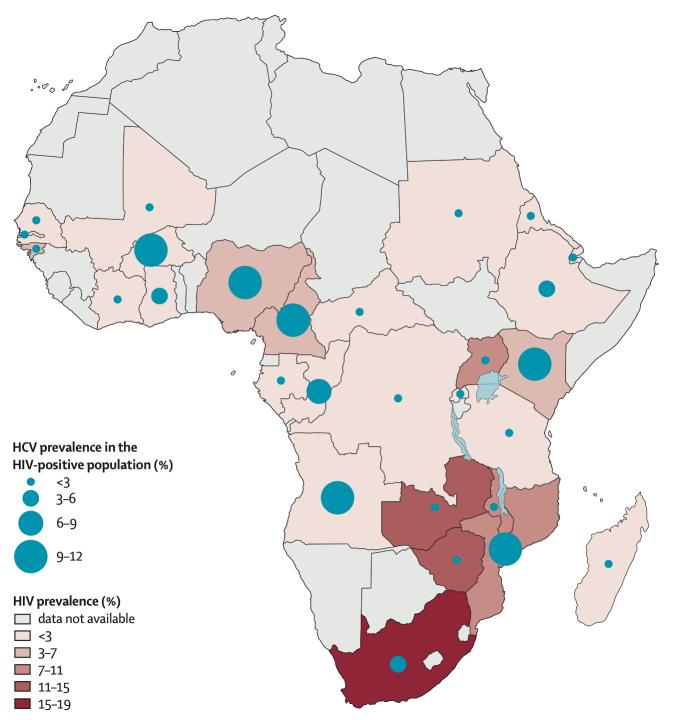
Labs: CD4 88, HIV VL >650,000; Creatinine normal; ALT 122, AST 98, Bilirubin 1.4mg/dL (24µmol/L), WBC 3300, Hematocrit 38%, Platelets 144


HAV IgG – positive HCV Ab – negative

HBsAg positive, HBcAb positive, HBsAb negative HBeAg positive, HBV DNA 4.2 x 10<sup>6</sup>

## Viral hepatitis is a leading cause of infectious disease death around the world





## Viral hepatitis is a leading cause of infectious disease death around the world



### Global Epidemiology of HBV

- 300 million people with active infection
- 1.5 million new infections; 820,000 deaths each year
- 3- 4 million with HIV-HBV coinfection





## HCV prevalence among people living with HIV

- 150 million people with active infection around the world
- 3% pooled HCV prevalence among people living with HIV in Africa, with regional variation
- 300 000 annual deaths worldwide

<sup>14</sup> Bhargavi Rao, Lancet Infect Dis 2015

## HBV and HCV Coinfection with HIV

- Increased risk of cirrhosis and hepatocellular carcinoma (HCC)
- Increased risk of mortality
- Can complicate management of other coinfections (e.g., TB)
- Management

Screen for liver-related complications: cirrhosis and HCC

HCV – treat with direct acting antivirals

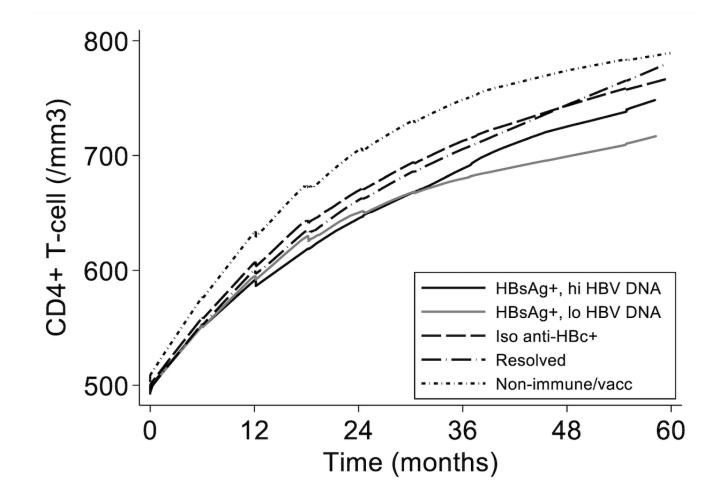
HBV – treat with dually active ART

# Which drugs are active against both HIV and HBV?

- A. Tenofovir disoproxil fumarate
- B. Tenofovir alafenamide
- C. Dolutegravir
- D. Rilpivirine
- E. Cabotegravir
- F. Emtricitabine
- G. Lamivudine


# Which drugs are active against both HIV and HBV?

- A. Tenofovir disoproxil fumarate
- B. Tenofovir alafenamide
- C. Dolutegravir
- D. Rilpivirine
- E. Cabotegravir
- F. Emtricitabine
- G. Lamivudine


## Mortality associated with HIV-HBV coinfection in Multicenter AIDS Cohort Study (MACS)

| HIV-1   | HBsAg | Person<br>years | Deaths from<br>liver disease (n) | Liver mortality<br>per 1000<br>person years | р         |
|---------|-------|-----------------|----------------------------------|---------------------------------------------|-----------|
| _       | _     | 31 366          | 0                                | 0.0                                         | Reference |
| _       | +     | 1318            | 1                                | 0.8                                         | 0.04      |
| +       | _     | 20605           | 35                               | 1.7                                         | <0.0001   |
| +       | +     | 1834            | 26                               | 14.2                                        | <0.0001   |
| Overall |       | 55 123          | 62                               | 1.1                                         |           |

## Mortality associated with HIV-HBV coinfection after immediate initiation of ART



## CD4+ recovery in HIV-HBV coinfection after immediate initiation of ART (TEMPRANO)



Mohareb AM, J Viral Hepatitis 2021

## Preventing and Managing HIV-HBV Coinfection

## People Living with HIV

33 million

HBV Vaccination, dual active ART

#### **People Living with HBV**

250-300 million

PrEP, HBV treatment

**People Living with HIV-HBV** 

3-4 million

**Dual active ART** 

Mohareb AM, JAMA Netw Open 2021

### Outline

- 1. Viral Hepatitis Coinfections
- 2. Metabolic Liver Disease and HIV
- 3. Hepatocellular carcinoma (HCC) and HIV
- 4. ART and PrEP in People with Hepatitis B

### Case Continued, 8 years later

35yo M treated with TDF/3TC/DTG for HIV-HBV coinfection

- He has had a continually suppressed HIV viral load
- His HBV DNA took 24 months to decline and has since had sporadic rises ("blips")
- HCV Ab continues to be negative
- ALT and AST initially improved to normal levels but over the past 2 years they have been >3 x upper limit of normal

## What are possible causes of elevated aminotransferases in this person?

## What are possible causes of elevated aminotransferases in this person?

- A. Complication of ART
- B. Sporadic elevations in HBV DNA ("blips") cause liver disease
- C. Other coinfections affecting the liver
- D. Metabolic disease affecting the liver
- E. Other causes

# Many factors promote liver disease in people living with HIV

#### HIV

- Bacterial translocation
- Depleted intestinal CD4
- Systemic increase in oxidative stress

#### Coinfections

- Chronic Hepatitis B, C
- Acute Hepatitis
- HSV, VZV, CMV, EBV
- Syphilis
- Hemorrhagic fevers

#### **Steatotic Liver Disease**

- Metabolic factors
- Alcohol intake
- Aging

#### **Medications, Drugs**

Hepato-toxicity, metabolic effects
 ART
 Antibiotics
 Analgesics
 Herbal medicines
 Alcohol
 <sup>25</sup>

# Many factors promote liver disease in people living with HIV

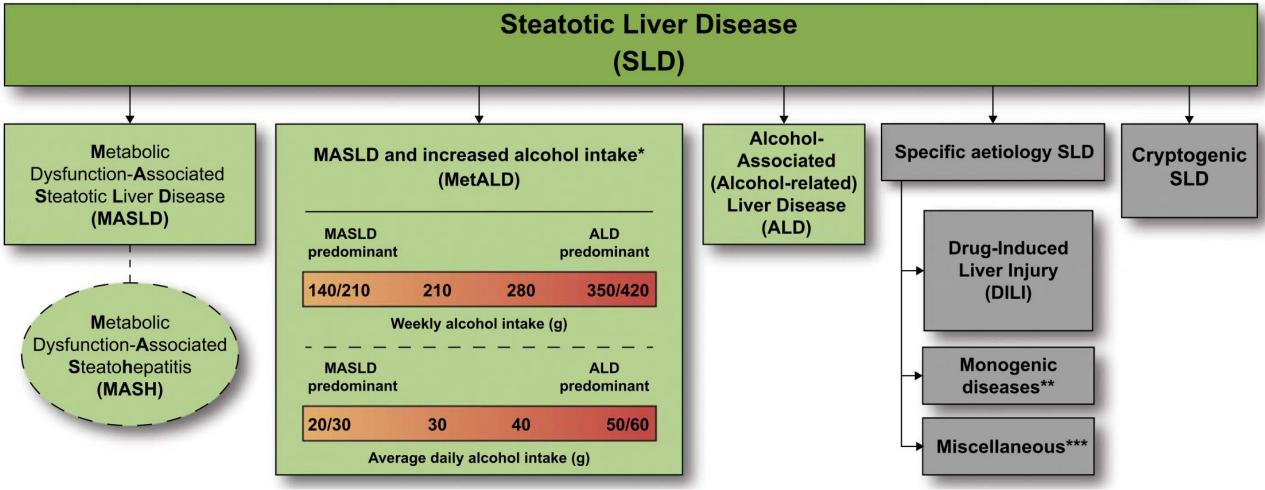
#### HIV

- Bacterial translocation
- Depleted intestinal CD4
- Systemic increase in oxidative stress

#### Coinfections

- Chronic Hepatitis B, C
- Acute Hepatitis
- HSV, VZV, CMV, EBV
- Syphilis
- Hemorrhagic fevers

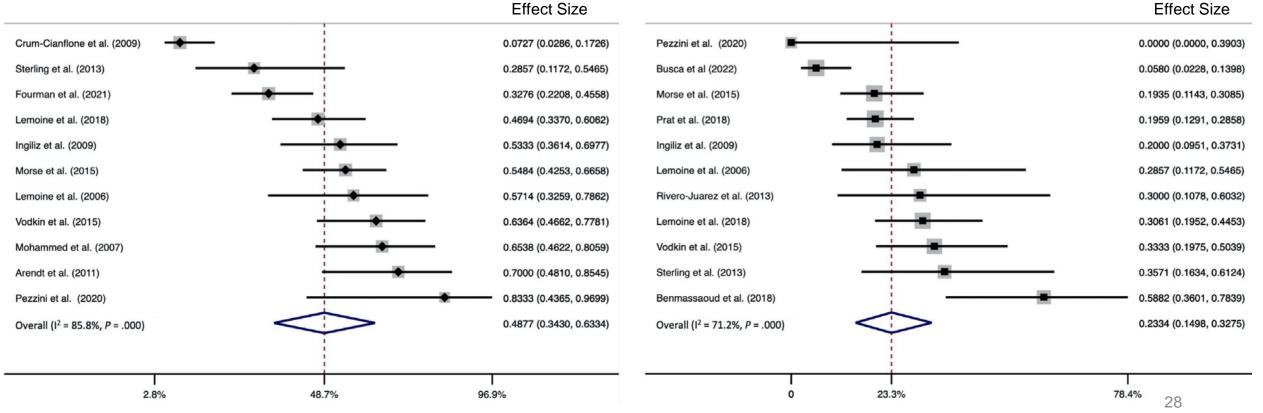
#### **Steatotic Liver Disease**


- Metabolic factors
- Alcohol intake

• Aging

#### **Medications**, Drugs

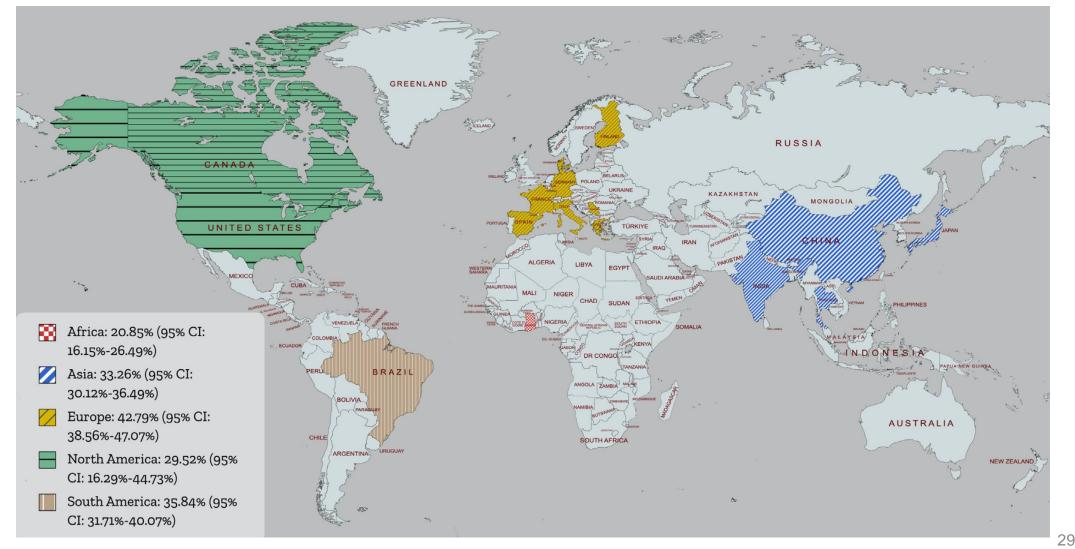
Hepato-toxicity, metabolic effects
 ART
 Antibiotics
 Analgesics
 Herbal medicines
 Alcohol
 <sup>26</sup>


## Nomenclature Change (2023)



NEWS

### Prevalence of Steatosis and Fibrosis in People with HIV who underwent Liver Biopsy


#### Metabolic Dysfunction-Associated Steatohepatitis (MASH) / NASH



Fibrosis (<u>></u>F2)

Kalligeros, Clin Gastroentreol Hepatol 2023.

## Data sources on Steatosis/Fibrosis in people with HIV monoinfection



Kalligeros, Clin Gastroentreol Hepatol 2023.

## Is HIV independently associated with SLD?

Compared to people living with HIV without NAFLD (MASLD), those living with HIV with NAFLD were more likely to have:

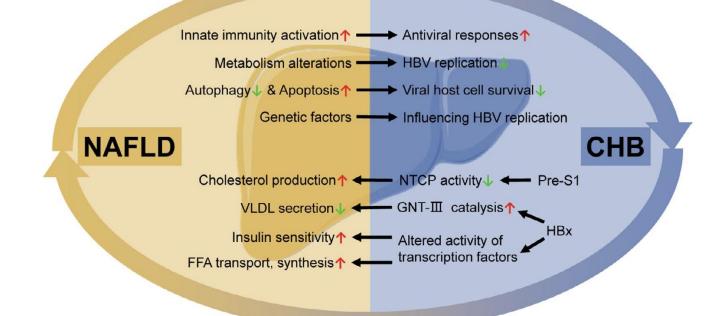
Diabetes

- Hypertension
- Hyperlipidemia
- Metabolic Syndrome
- Higher BMI
- More years since HIV diagnosis
- Longer exposure to ART

## Is HIV independently associated with SLD?

Compared to people living with HIV without NAFLD (MASLD), those living with HIV with NAFLD were more likely to have:

Diabetes


- Hypertension
- Hyperlipidemia
- Metabolic Syndrome
- Higher BMI
- More years since HIV diagnosis
- Longer exposure to ART

#### ART and SLD

- Older NRTIs, some PIs
- Didanosine, zidovudine, stavudine, zalcitabine
- TAF, some INSTIs via weight gain?

### Hepatitis B and Steatotic Liver Disease

Complex and poorly understood interaction between HBV and SLD. Is there a decreased incidence of SLD among people with HBV? SLD may accelerate fibrosis and cirrhosis among people with HBV, **BUT there appears to be a negative correlation with HCC. Does SLD promote HBsAg loss?** 



Zhang, Liver Intl 2020 Yang, Liver Intl 2022 Shi, World J Gastroenterol 2021

### Outline

- 1. Viral Hepatitis Coinfections
- 2. Metabolic Liver Disease and HIV
- 3. Hepatocellular carcinoma (HCC) and HIV
- 4. ART and PrEP in People with Hepatitis B

## Case Continued, 5 years later

40yo M treated with TDF/3TC/DTG for HIV-HBV coinfection

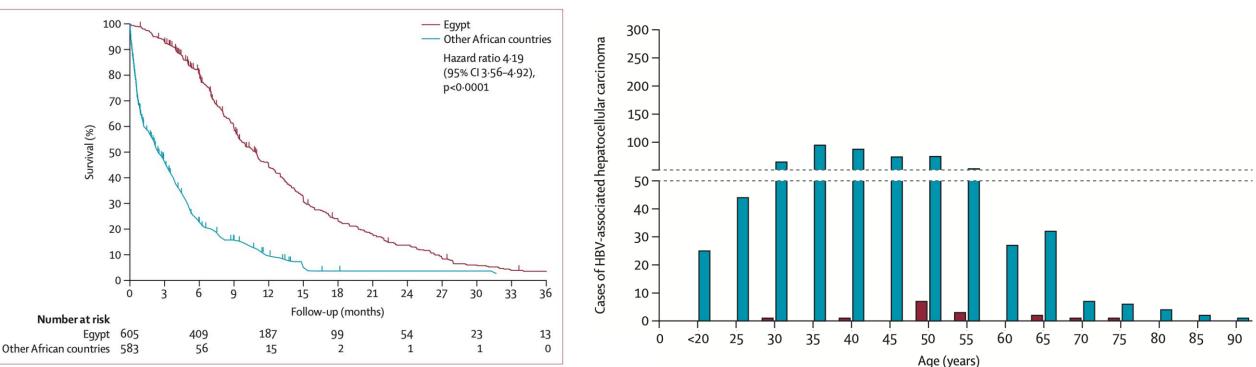
- He has had a continually suppressed HIV viral load.
- He remains HBsAg-positive with undetectable HBV DNA.
- He occasionally has elevated ALT.
- He was started on a statin.
- He has a family history of colon cancer and cancer of unknown primary.

Should we screen for hepatocellular carcinoma in this person?

# Should we screen for HCC in people living with HIV?

- A. Screen all people with HIV, even without HBV
- B. Screen all people with HBV, even without HIV
- C. Screen all people with HIV-HBV coinfection, but not either infection alone
- D. Screen people with HIV-HBV coinfection above age 40yo
- E. Screen all people only if they have cirrhosis
- F. No need to screen for HCC if they take ART
- G. No need to screen for HCC at all

## Screening for HCC in HBV monoinfection


HCC screening is thought to be cost-effective in people whose risk exceeds 0.2% per year (i.e., 2 per 1000 person-years).

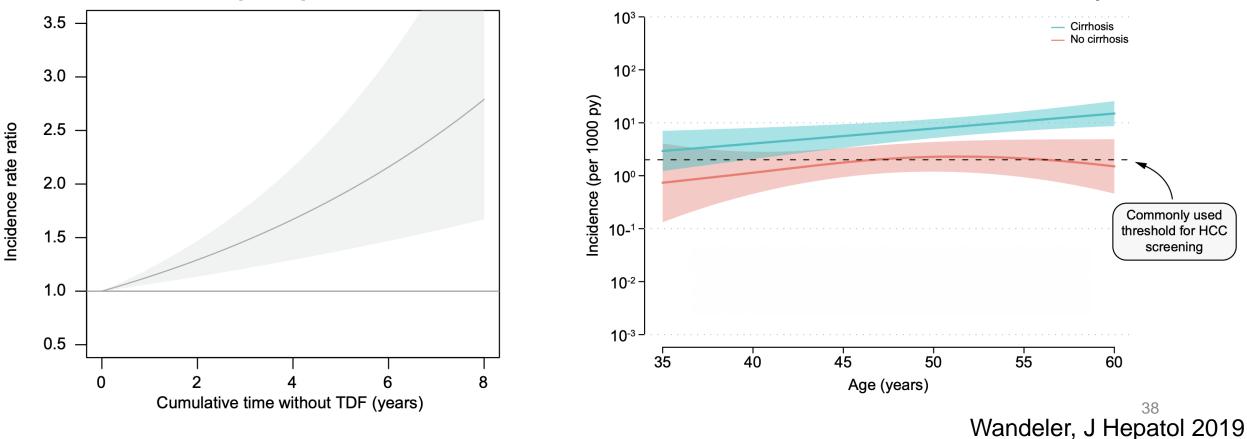
Europe/North American guidelines recommend HCC screening for people with HBV monoinfection:

- Anyone with cirrhosis
- Asian or Black males >40yo
- Asian females >50yo
- Other demographics based on risk scores (PAGE-B, REACH-B)

### HCC is an important cause of early death in Africa

Survival after HCC Diagnosis (all cause)




Age at HCC Diagnosis (HBV-monoinfection)

Yang, Lancet Gastroenterol Hepatol 2017

Screening for HCC in people with HIV-HBV Analysis of HCC in 4 prospective European cohorts of PLWH Major findings:

Increasing risk of HCC for a longer time off tenofovir

For people without cirrhosis, HCC risk was low until >45yo

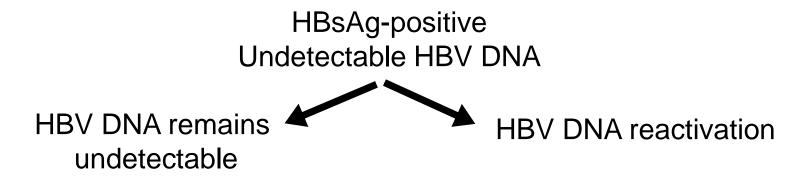


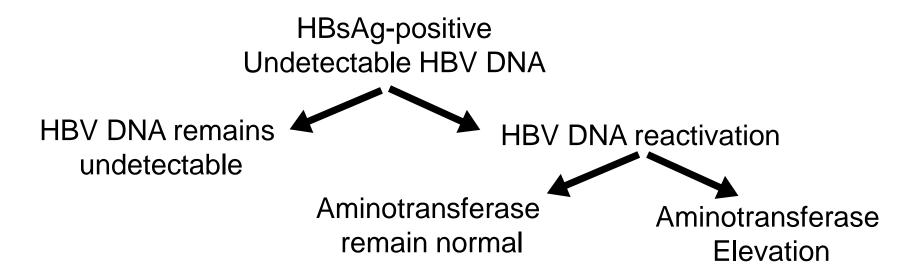
### Outline

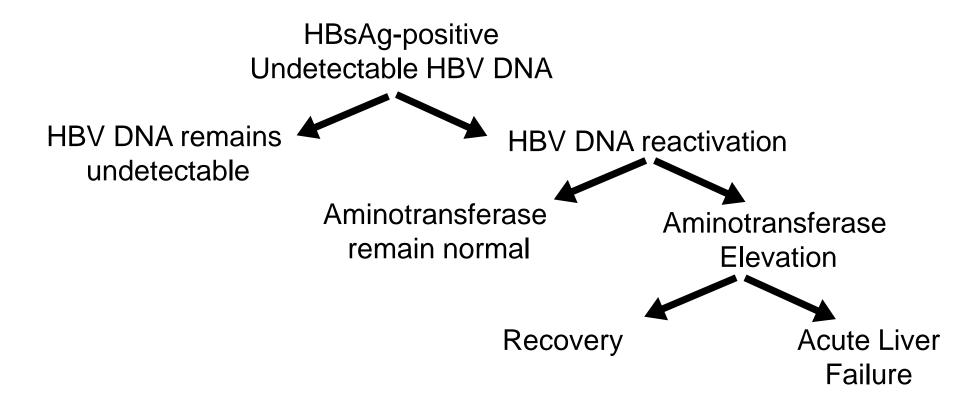
- 1. Viral Hepatitis Coinfections
- 2. Metabolic Liver Disease and HIV
- 3. Hepatocellular carcinoma (HCC) and HIV
- 4. ART and PrEP in People with Hepatitis B

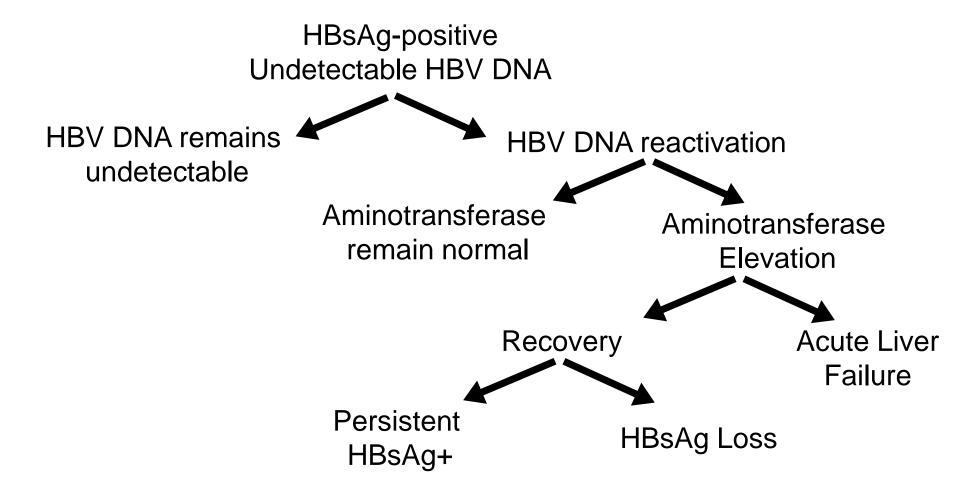
### Case Continued, 2 years later

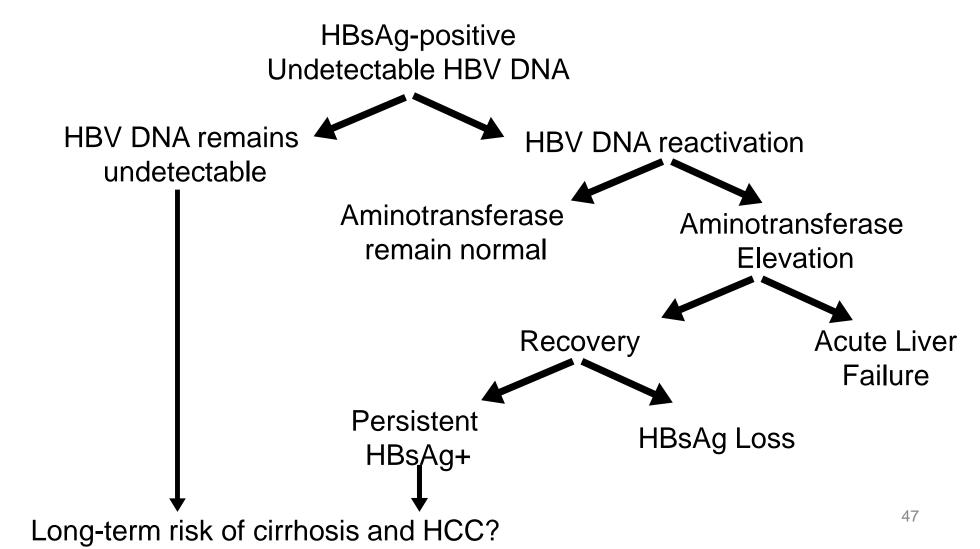
42yo M treated with TDF/3TC/DTG for HIV-HBV coinfection


- He has had a continually suppressed HIV viral load.
- He remains HBsAg-positive.
- He has started a statin.
- He has gained some weight.
- He expresses a strong preference for ART simplification because of perceived side effects, convenience, and general disdain for 3-drug therapy.

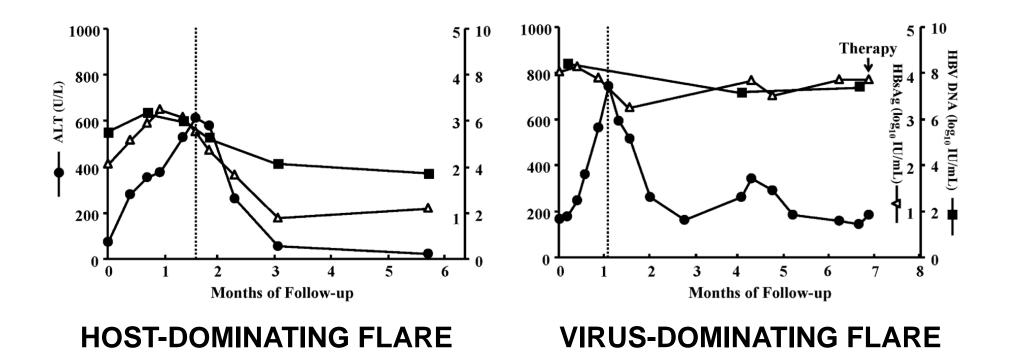

How do we counsel this person?


# How would you approach "ART simplification" for a person with HIV-HBV coinfection who is currently taking TDF/3TC/DTG?


- A. Switch to 3TC/DTG (lamivudine/dolutegravir)
- B. Switch to 3TC/DTC and add entecavir for the HBV
- C. Switch to long-acting injectible (tenofovir-free) ART
- D. Switch to DTG/RPV (dolutegravir/rilpivirine)
- E. Do not switch off from TDF/3TC/DTG


HBsAg-positive Undetectable HBV DNA












### Hepatitis Flares Following Antiviral Cessation in HBV: Good or Bad?



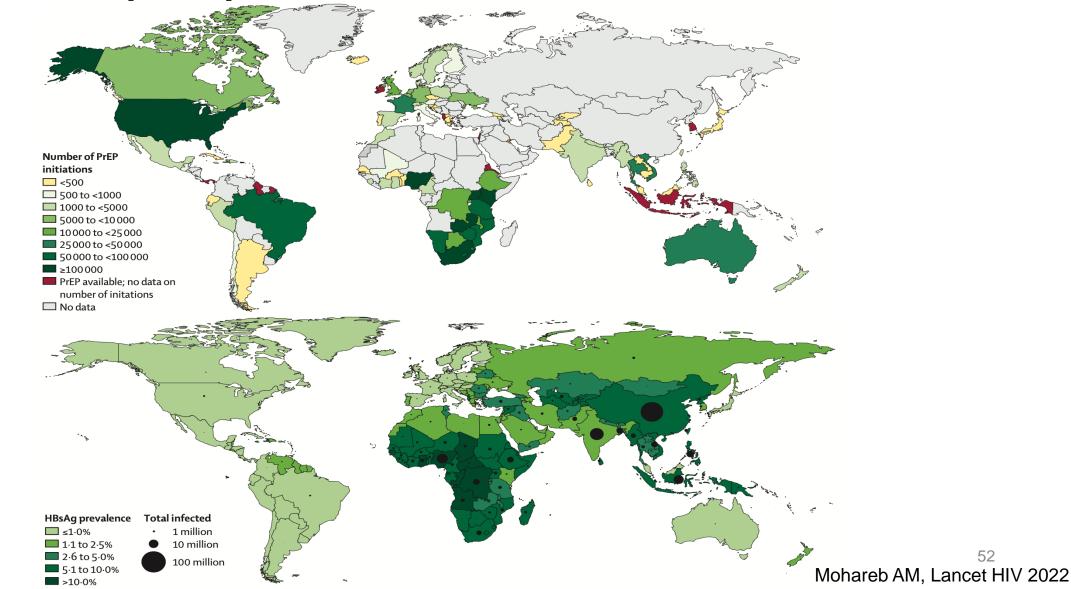
### Events following antiviral cessation in chronic HBV mono-infection

| Event                                                    | Estimated frequency<br>(12 months post-cessation) |
|----------------------------------------------------------|---------------------------------------------------|
| HBV DNA reactivation<br>("Virological Relapse")          | 65- 80%                                           |
| Hepatitis flares<br>("Clinical Relapse")                 | 35%                                               |
| HBeAg reversion                                          | 9%                                                |
| Acute liver failure<br>("Fulminant Hepatitis")           | <1%*                                              |
| HBsAg loss<br>("Functional Cure")                        | 2 - 4%                                            |
| Long-term risk of cirrhosis and hepatocellular carcinoma | ???                                               |

\* Subject to reporting bias and differing definitions

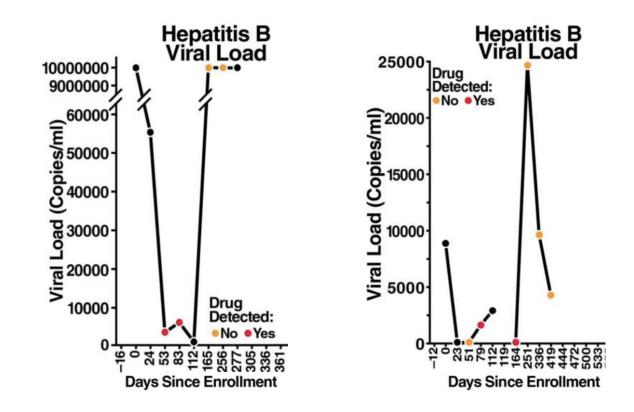
#### HBV/Hepatitis Flares after ART simplification Case Series from New York City

|                   | HIV Parameters at                                                      | <b>ART Regimen</b>         |              | <b>Reason</b> for                                   | HBV                                                         | HBV Studies                                               |                                                                  |                                                                                                           |
|-------------------|------------------------------------------------------------------------|----------------------------|--------------|-----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                   |                                                                        | Preswitch                  | Postswitch   | Switch                                              | Vaccination                                                 | Preswitch                                                 | Postswitch                                                       | Outcomes                                                                                                  |
| Case 1<br>65 yo M | CD4 202<br>VL <20                                                      | ABC<br>3TC                 | DTG<br>RPV   | Patient preference<br>for single-<br>tablet regimen | Completed 2<br>series                                       | HBsAg–<br>HBcAb–HBsAb–                                    | HBsAg+<br>HBcAb+                                                 | Peak ALT 570<br>Recovered on                                                                              |
|                   | Mutations: M184V,<br>M41L, L210L,<br>T215T, D67T, M46I,<br>I54V, V82F  | Nevirapine<br>FPV/r        | iu (         |                                                     | 6 y prior: Time<br>0, 1, 6 mo<br>1 y prior: Time<br>0, 3 mo | (Immediately<br>prior)                                    | HBsAb-<br>HBeAg+<br>HBV DNA<br>1.75 mil                          | tenofovir                                                                                                 |
| Case 2<br>33 yo M | CD4 304<br>VL 30,600                                                   | TAF<br>FTC                 | DTG<br>DRV/r | NRTI resistance                                     | Completed 1 series                                          | HBsAg–<br>HBcAb–                                          | HBsAg+<br>HBcAb-                                                 | Peak ALT 2640,<br>Tbili 17, INR 3.3                                                                       |
| -                 | Mutations: M184V,<br>K65R, K103N,<br>E138Q                             | RPV                        |              |                                                     | 3 y prior: Time<br>0, 8 mo, 11 mo                           | HBsAb+<br>(titer=41)<br>(3 y prior)                       | (titer=41) HBeAg+                                                | Hepatomegaly<br>Evaluated for<br>transplant; recovered<br>on tenofovir                                    |
| Case 3<br>67 yo F | CD4 13<br>VL 211,000<br>No significant<br>mutations                    | TDF<br>FTC<br>ATV/r        | DTG<br>DRV/c | Chronic kidney<br>disease                           | Completed 1<br>series<br>8 y prior: Time<br>0, 1 mo         | HBsAg-<br>HBcAb+<br>HBsAb+<br>(titer = 86)<br>(4 y prior) | HBsAg+<br>HBcAb+<br>HBsAb+<br>(titer = 79)<br>HBV DNA<br>141 mil | Peak ALT 155<br>Lost to follow-up                                                                         |
| Case 4<br>66 yo M | CD4 716<br>VL <20<br>Mutations: M184V,<br>M41L, L210L,<br>T215T, K103N | TAF<br>FTC<br>DRV/r<br>DTG | DTG<br>RPV   | Patient preference<br>for single-<br>tablet regimen | Not applicable                                              | HBsAg+<br>HBsAb-<br>HBV DNA <10<br>(1 y prior)            | HBsAg+<br>HBcAb+<br>HBsAb-<br>HBV DNA<br>24.6 mil                | Peak ALT 680, Tbili<br>21, INR 4.7<br>Hepatomegaly with<br>gastric varices<br>Required<br>transplantation |


Vasishta, JAIDS 2023

#### HBV/Hepatitis Flares after ART simplification Case Series from New York City

|                   | HIV Parameters at                                                                          | ART R                             | Regimen      | <b>Reason</b> for                                   | HBV<br>Vaccination                                                                   | <b>HBV</b> Studies                                        |                                                                        |                                                                                                              |
|-------------------|--------------------------------------------------------------------------------------------|-----------------------------------|--------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                   | Time of Switch                                                                             | Preswitch                         | Postswitch   | Switch                                              |                                                                                      | Preswitch                                                 | Postswitch                                                             | Outcomes                                                                                                     |
| Case 1<br>65 yo M | CD4 202<br>VL <20<br>Mutations: M184V,<br>M41L, L210L,<br>T215T, D67T, M46I,<br>I54V, V82F | ABC<br>3TC<br>Nevirapine<br>FPV/r | DTG<br>RPV   | Patient preference<br>for single-<br>tablet regimen | Completed 2<br>series<br>6 y prior: Time<br>0, 1, 6 mo<br>1 y prior: Time<br>0, 3 mo | HBsAg-<br>HBcAb-HBsAb-<br>(Immediately<br>prior)          | HBsAg+<br>HBcAb+<br>HBsAb-<br>HBeAg+<br>HBV DNA                        | Peak ALT 570<br>Recovered on<br>tenofovir                                                                    |
| Case 2<br>33 yo M | CD4 304<br>VL 30,600<br>Mutations: M184V,<br>K65R, K103N,<br>E138Q                         | TAF<br>FTC<br>RPV                 | DTG<br>DRV/r | NRTI resistance                                     | Completed 1<br>series<br>3 y prior: Time<br>0, 8 mo, 11 mo                           | HBsAg-<br>HBcAb-<br>HBsAb+<br>(titer=41)<br>(3 y prior)   | 1.75 mil<br>HBsAg+<br>HBcAb-<br>HBsAb-<br>HBeAg+<br>HBV DNA<br>380 mil | Peak ALT 2640,<br>Tbili 17, INR 3.3<br>Hepatomegaly<br>Evaluated for<br>transplant; recovere<br>on tenofovir |
| Case 3<br>67 yo F | CD4 13<br>VL 211,000<br>No significant<br>mutations                                        | TDF<br>FTC<br>ATV/r               | DTG<br>DRV/c | Chronic kidney<br>disease                           | Completed 1<br>series<br>8 y prior: Time<br>0, 1 mo                                  | HBsAg-<br>HBcAb+<br>HBsAb+<br>(titer = 86)<br>(4 y prior) | HBsAg+<br>HBcAb+<br>HBsAb+<br>(titer = 79)<br>HBV DNA<br>141 mil       | Peak ALT 155<br>Lost to follow-up                                                                            |
| Case 4<br>66 yo M | CD4 716<br>VL <20<br>Mutations: M184V,<br>M41L, L210L,<br>T215T, K103N                     | TAF<br>FTC<br>DRV/r<br>DTG        | DTG<br>RPV   | Patient preference<br>for single-<br>tablet regimen | Not applicable                                                                       | HBsAg+<br>HBsAb-<br>HBV DNA <10<br>(1 y prior)            | HBsAg+<br>HBcAb+<br>HBsAb-<br>HBV DNA<br>24.6 mil                      | Peak ALT 680, Tbi<br>21, INR 4.7<br>Hepatomegaly with<br>gastric varices<br>Required<br>transplantation      |


Vasishta, JAIDS 2023

### Similar Concerns with Tenofovir-based PrEP in people with chronic HBV



### Most PrEP trials excluded people with HBV...except iPrEx

iPrEx randomized 2499 people to TDF/FTC v placebo 6 participants in the TDF/FTC arm had HBsAg+ (< 0.5%)



## **Principles for managing PrEP in people with chronic HBV**

PrEP is an opportunity to screen for HBV (and STIs), but people should not wait for an HBV test result to start PrEP.

Tenofovir-based PrEP is an opportunity to expand access to effective antiviral therapy for people with HBV.

Cessation of tenofovir-based PrEP can risk virologic relapse and hepatitis flares in people with HBV: laboratory monitoring following PrEP cessation is necessary.

### Summary

1. Viral Hepatitis B and C are common coinfections that impact people living with HIV.

2. There are multiple mechanisms of steatosis among people living with HIV.

3. Screening for HCC is important in people with HIV, especially those living with HBV.

4. There are complexities of ART simplification (and PrEP) among people living with HBV.

### Thank You / Acknowledgements

AWACC Conference Organizers and University of KZN Raj Gandhi, Yunus Moosa, Henry Sunpath, many others Nithen Manickchund

Arthur Kim, Emily Hyle, Kenneth Freedberg

George Yendewa

Menan Gérard Kouamé, Patrick Coffie, Raoul Moh Anders Boyd

Funders:

National Institutes of Health (US) [K01-AI66126] Harvard University Center for AIDS Research [P30 AI060354]

### Contact

Amir M. Mohareb Massachusetts General Hospital Harvard Medical School

amohareb@mgh.harvard.edu



