AUDIOLOGY AND MDR TB

KING DINUZULU HOSPITAL COMPLEX

Presented by: Verusha Rugbeer

Developed by: Verusha Rugbeer and Nishita Doolabh

What is Audiology

- The science of hearing
- An audiologist is a health care professional that is dedicated to hearing and hearing related disorders.
- An audiologist is involved in the:
 - detection
 - identification
 - diagnosis
 - management
 - rehabilitation

...of the auditory and vestibular system

A Global Phenomenon

According to a GBD Study, hearing impairment is the third leading cause of disability

Hearing Loss & MDR-TB in SA

- In South Africa the incidence of hearing impairment is further exacerbated by infectious diseases and the use of ototoxic medications
- Research has firmly established that aminoglycosides cause permanent hearing loss in humans (Cianfrone, Pentagelo, & Cianfrone, 2011).

Effects of Aminoglycosides

Integral part of MDR TB treatment, and has well documented adverse reactions:

Table 1: Classes of TB drugs

Classes	Anti-TB drugs	Comments	
1 st line drugs	Rifampicin (RIF)	Core of initial TB treatment None are ototoxic	
	Isoniazid (INH)		
	Pyrazinamide (PZA)		
	Ethambutol (EMB)		
2 nd line drugs	Streptomycin (SM)	Aminoglycoside used in retreatment TB Ototoxic & nephrotoxic	
	Kanamycin/Amikacin	Aminoglycoside used in MDR-TB Ototoxic & nephrotoxic	
	Capreomycin*	Polypeptide drug used in MDR-TB Ototoxic & nephrotoxic	
	p-Aminosalicylic acid		
	Levofloxacin		
	Moxifloxacin	No ototoxic potential	
	Gatifloxacin	documented	
	Cycloserine		
	Ethionamide		

Ototoxicity - Death of Hair Cells

oto = "ear" and toxic = "poison"

Normal Ear

Damaged Ear

Figure 4: Baseline and follow-up audio-grams of a patient on treatment for MDR-TB showing bilateral symmetrical progressive sensorineural hearing loss (SNHL)

Date: 23/11/09

OME: 23/07/09

Hearing Loss as an Adverse Event

Study	No. of participants	Percentage of HL
Jacobs & Ross, 2012 (study conducted at KDHC)	350	28.7%
Van der Walt et al., 2013 (study included all 9 provinces in SA)	108	38.9%
Brust et al., 2013 (study conducted in KZN, SA)	91	69%

Incidence of Hearing Loss

Graph Showing Incidence of Aminoglycoside Cochleotoxicity

2002 – De Jagger et al.

2007 - Duggal et al.

2011 - Sturdy et al.

2012 - Harris et al.

2013 - Appana

Impact of Hearing Loss

Prevention

Primary Prevention

- Do not prescribe ototoxic medication
- Not always possible

Secondary Prevention

- Timely detection of cochlear damage
- Monitoring and evaluations
- Early intervention
- Enhance quality of life

Audiology in an MDR-TB unit:

The audiology department plays an important role in the MDR TB unit. Within the MDR TB unit, the audiologist is involved in monitoring each patients hearing on a monthly basis.

- This is so that we can detect small changes in the patients hearing status.
- Once these changes are detected, the doctor is informed
- Doctor may be able to decrease the dosage, reduce frequency or stop ototoxic medications to prevent further damage
- Depending on the severity of the patients hearing loss, the audiologist may also be able to provide the patient with a hearing aid.

Audiology requirements in an MDR-TB Unit:

- Every MDR-TB unit should have a minimum of one audiologist (staffing dependent on hospital bed status) to monitor ototoxicity of treatment and its effects on hearing.
- Conventional Audiology Testing:
 - Otoscopic examination
 - Tympanometry
 - Pure tone testing (air conduction for screening & bone conduction for diagnostic testing)
 - DPOAE's
 - ABR

Audiological Monitoring and Evaluations of MDR-TB patients

Baseline (Prior to initiation of MDRTB treatment)

Monthly audiological follow ups, while on treatment

Exit audiogram (Prior to discharge)

Monitoring and evaluations 6 months post treatment

QUESTIONS

References

- Bardien, S., Human, H., Harris, T., Hefke, G., Veikondis, R., Schaaf, S. H., . . . de Jong, G. (2009). A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness. *BMC Medical Genetics* .
- Brust, J. C., Sha, S. N., van der Merwe, T. L., Bamber, S., Ning, Y., Heo, M., et al. (2013). Adverse Events in an Integrated Home-Based Treatment Program for MDR-TB and HIV in KwaZulu-Natal, South Africa. *J Acquir Immune Defic Syndr*, 436-440.
- Chen, Y., Huang, W.-G., & Zha et al, D.-J. (2007). Aspirin attenuates gentamicin ototoxicity: From the laboratory to the clinic. *Hear Res*, 178-182.
- Cianfrone, G., Pentagelo, D., & Cianfrone, F. (2011). Pharmacological drugs inducing ototoxicity, vestibular symptoms and tinnitus: a reasoned and updated guide. *Eur Rev Med Pharmacol Sci.*, 601-636.
- Guthrie, O. W. (2008). Aminoglycoside induced ototoxicity. Elsevier, 91-96.
- Harris, T., & Heinze, B. (2012). Tuberculosis (TB), Aminoglycoside and HIV- Related Hearing Loss.
 South African Medical Journal, 102, 363-365. Retrieved June 3, 2015, from
 http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0256 95742012000600020&lng=en&nrm=iso&tlng=en
- Jacobs, T. Q., & Ross, A. (2012). Adverse effects profile of multidrug-resistant tuberculosis treatment.
 South African Family Practise, 531-539.

References:

- Konrad-Martin, D., Gordon, J. S., Reavis, K. M., Wilmington, D. J., Helt, W. J., & Fausti, S. A. (2005). Audiological Monitoring of Patients Receiving Ototoxic Drugs. *Division 6 publication*, 17-22.
- Metha, U., Durrheim, D. N., & Blockman, M. (2007). Adverse drug reactions in adult inpatients in a South African
 hospital serving a community with a high HIV/ AIDS prevalence: prospective observational study. Br J Clin
 Pharmacol, 396-406.
- Mukadi, Y., Maher, D., & Harries, A. (2001). Tuberculosis case fatality rates in high HIV prevalence populations in sub-Saharan Africa. *AIDS*, 143-152.
- Peterson, L., & Rogers, C. (2015). Aminoglycoside-induced hearing deficits a review of cochlear ototoxicity. South African Family Practice, 1-6.
- Seddon, J. A., Godfrey-Faussett, P., Jacobs, K., Ebrahim, A., Hesseling, A. C., & Schaaf, H. S. (2012). Hearing loss in patients on treatment for drug-resistant tuberculosis. *Euro Respiration Journal*.
- South African Department of Health. (2009). South African National Tuberculosis Guidelines. Retrieved from http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=oCBwQFjAA&url=http%3A%2F% 2Ffamilymedicine.ukzn.ac.za%2FLibraries%2FGuidelines_Protocols%2FTB_Guidelines_2009.sflb.ashx&ei=YlFs VZLOB4SE7gbp-4KgBA&usg=AFQjCNGrbXUQp6CITx-6rN7gixh2syj5wA&si

References:

- Stevens, G., Flaxman, S., Brunskill, E., Mascarenhas, M., Mathers, C. D., & Finucane, M. (2011). Global and regional hearing impairment prevalence: An analysis of 42 studies in 29 countries. *The European Journal of Public Health*, 23(1), 146-152.
- Xing, G., Chen, Z., & Cao, X. (2007). Mitochondrial rRNA and tRNA and hearing function. Cell Res, 227-239.