Laboratory Diagnosis of HIV Co-Infection (and HIV Infection): What’s New?

AWACC 28th September, 2013
Mark J. Siedner MD MPH
Harvard Medical School
Massachusetts General Hospital
Summary

• Tuberculosis diagnostics
 – Gene Xpert MTB/RIF Assay
 – Urine LAM

• Cryptococcus diagnostics
 – Cryptococcal antigen lateral flow assay

• PCP diagnostics
 – 1-3-D-β-glucan

• HIV diagnostics
 – 4th generation HIV Ab/Ag rapid tests
 – POC CD4 testing
 – What’s in the pipeline
Tuberculosis Diagnostics Summary

<table>
<thead>
<tr>
<th>Assay</th>
<th>Time to Diagnosis</th>
<th>Equipment Cost</th>
<th>Specimen Cost</th>
<th>Sens</th>
<th>Spec</th>
<th>Resist Testing</th>
<th>Infrastructure Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziehl-Neilson smear</td>
<td>< 1 hour</td>
<td>$1,500 LED microscope</td>
<td>Minimal</td>
<td>20-50%</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory technicians</td>
</tr>
<tr>
<td>Auramine smear</td>
<td>< 1 hour</td>
<td>$10,000 fluorescent microscope</td>
<td>Minimal</td>
<td>Adds ~10% to Z/N</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory/technicians, electricity</td>
</tr>
<tr>
<td>MTB/RIF Gene Xpert</td>
<td>~2-3 hours</td>
<td>$17,000 machine</td>
<td>~$15/test</td>
<td>Smear+: 70-90% Smear-: 60-75%</td>
<td>95-98%</td>
<td>RIF only</td>
<td>Electricity, minimally trained staff</td>
</tr>
<tr>
<td>Urine LAM</td>
<td>25 minutes</td>
<td>Minimal</td>
<td>$4/strip</td>
<td>10-70%</td>
<td>90-95%</td>
<td>No</td>
<td>Minimal</td>
</tr>
<tr>
<td>Liquid Culture</td>
<td>~2 weeks</td>
<td>Microbiology laboratory</td>
<td>$30/sample</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
<td>P3 laboratory, microbiology staff</td>
</tr>
<tr>
<td>Agar Culture</td>
<td>~4-6 weeks</td>
<td>Microbiology laboratory</td>
<td>$20/sample</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
<td>P3 laboratory, microbiology staff</td>
</tr>
</tbody>
</table>
Tuberculosis Diagnostics Summary

<table>
<thead>
<tr>
<th>Assay</th>
<th>Time to Diagnosis</th>
<th>Equipment Cost</th>
<th>Specimen Cost</th>
<th>Sens</th>
<th>Spec</th>
<th>Resist Testing</th>
<th>Infrastructure Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziehl-Neilson smear</td>
<td>< 1 hour</td>
<td>$1,500 LED microscope</td>
<td>Minimal</td>
<td>20-50%</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory technicians</td>
</tr>
<tr>
<td>Assay</td>
<td>Time to Diagnosis</td>
<td>Equipment Cost</td>
<td>Specimen Cost</td>
<td>Sens</td>
<td>Spec</td>
<td>Resist Testing</td>
<td>Infrastructure Required</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
<td>------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Ziehl-Neilson smear</td>
<td>< 1 hour</td>
<td>$1,500 LED microscope</td>
<td>Minimal</td>
<td>20-50%</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory technicians</td>
</tr>
<tr>
<td>Auramine smear</td>
<td>< 1 hour</td>
<td>$10,000 fluorescent microscope</td>
<td>Minimal</td>
<td>Adds ~10% to Z/N</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory/technicians, electricity</td>
</tr>
<tr>
<td>Assay</td>
<td>Time to Diagnosis</td>
<td>Equipment Cost</td>
<td>Specimen Cost</td>
<td>Sens</td>
<td>Spec</td>
<td>Resist Testing</td>
<td>Infrastructure Required</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>-------</td>
<td>------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Ziehl-Neilson smear</td>
<td>< 1 hour</td>
<td>$1,500 LED microscope</td>
<td>Minimal</td>
<td>20-50%</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory technicians</td>
</tr>
<tr>
<td>Auramine smear</td>
<td>< 1 hour</td>
<td>$10,000 fluorescent microscope</td>
<td>Minimal</td>
<td>Add $10% to Z/N</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory/technicians, electricity</td>
</tr>
<tr>
<td>MTB/RIF Gene Xpert</td>
<td>~2-3 hours</td>
<td>$17,000 machine</td>
<td>~$15/test</td>
<td>Smear+: 70-90% Smear-: 60-75%</td>
<td>95-98%</td>
<td>RIF only</td>
<td>Electricity, minimally trained staff</td>
</tr>
</tbody>
</table>
Tuberculosis Diagnostics Summary

<table>
<thead>
<tr>
<th>Assay</th>
<th>Time to Diagnosis</th>
<th>Equipment Cost</th>
<th>Specimen Cost</th>
<th>Sens</th>
<th>Spec</th>
<th>Resist Testing</th>
<th>Infrastructure Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziehl-Neilson smear</td>
<td>< 1 hour</td>
<td>$1,500 LED microscope</td>
<td>Minimal</td>
<td>20-50%</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory technicians</td>
</tr>
<tr>
<td>Auramine smear</td>
<td>< 1 hour</td>
<td>$10,000 fluorescent microscope</td>
<td>Minimal</td>
<td>Adds ~10% to Z/N</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory/technicians, electricity</td>
</tr>
<tr>
<td>MTB/RIF Gene Xpert</td>
<td>~2-3 hours</td>
<td>$17,000 machine</td>
<td>~$15/test</td>
<td>Smear+: 70-90% Smear-: 60-75%</td>
<td>95-98%</td>
<td>RIF only</td>
<td>Electricity, minimally trained staff</td>
</tr>
<tr>
<td>Urine LAM</td>
<td>25 minutes</td>
<td>Minimal</td>
<td>$4/strip</td>
<td>10-70%</td>
<td>90-95%</td>
<td>No</td>
<td>Minimal</td>
</tr>
<tr>
<td>Assay</td>
<td>Time to Diagnosis</td>
<td>Equipment Cost</td>
<td>Specimen Cost</td>
<td>Sens</td>
<td>Spec</td>
<td>Resist Testing</td>
<td>Infrastructure Required</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Ziehl-Neilson smear</td>
<td>< 1 hour</td>
<td>$1,500 LED microscope</td>
<td>Minimal</td>
<td>20-50%</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory technicians</td>
</tr>
<tr>
<td>Auramine smear</td>
<td>< 1 hour</td>
<td>$10,000 fluorescent microscope</td>
<td>Minimal</td>
<td>Adds ~10% to Z/N</td>
<td>>95%</td>
<td>No</td>
<td>Basic laboratory/technicians, electricity</td>
</tr>
<tr>
<td>MTB/RIF Gene Xpert</td>
<td>~2-3 hours</td>
<td>$17,000 machine</td>
<td>~$15/test</td>
<td>Smear+: 70-90% Smear-: 60-75%</td>
<td>95-98%</td>
<td>RIF only</td>
<td>Electricity, minimally trained staff</td>
</tr>
<tr>
<td>Urine LAM</td>
<td>25 minutes</td>
<td>Minimal</td>
<td>$4/strip</td>
<td>10-70%</td>
<td>90-95%</td>
<td>No</td>
<td>Minimal</td>
</tr>
<tr>
<td>Liquid Culture</td>
<td>~2 weeks</td>
<td>Microbiology laboratory</td>
<td>$30/sample</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
<td>P3 laboratory, microbiology staff</td>
</tr>
<tr>
<td>Agar Culture</td>
<td>~4-6 weeks</td>
<td>Microbiology laboratory</td>
<td>$20/sample</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
<td>P3 laboratory, microbiology staff</td>
</tr>
</tbody>
</table>
Gene Xpert MTB/RIF Assay

• Operations
 – 2-hour run time
 – Machines with 1, 4, 16, or 48 modules
 – Requires minimally trained staff, electricity
 – $17,000 per machine in LMIC ($62,000 in UIC)
 – ~$15 per cartridge in LMIC ($120 in UIC)
Gene Xpert MTB/RIF Assay

• Functionality
 – Nucleic acid amplification (RT-PCR) of \(rpoB \) gene (RNA polymerase)
 – 5 probes encompassing 81-bp RNA pol gene
 – Amplification & detection of gene indicates TB
 • Positive control with \textit{Bacillus spp.} organism
 – Failed amplification of an intermediate probe indicates rifampin resistance
TB, RIF-susceptible

TB, RIF-resistant

Gene Xpert MTB/RIF Assay Accuracy

• Overall test performance for pulmonary TB
 – 90% overall sensitivity versus culture
 – 82% overall sensitivity among HIV+

• Smear positive versus negative disease
 – 98% sensitive in smear+/culture+ disease
 – 75% sensitive in smear-/culture+ disease
 • Not divided by HIV-infection

• Detection of RIF resistance
 – 94% sensitive to detect RIF resistance

Gene Xpert MTB/RIF Assay Accuracy in Smear Negative-Culture Positive Disease

<table>
<thead>
<tr>
<th>Location</th>
<th>Patient Population</th>
<th>HIV prevalence</th>
<th>n (smear-, culture+ cases)</th>
<th>Sensitivity to detect smear-negative TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>TB suspects</td>
<td>Not reported</td>
<td>78</td>
<td>61/78 = 78%</td>
</tr>
<tr>
<td>Peru, Azerbaijan, South Africa, India</td>
<td>TB suspects</td>
<td>40%</td>
<td>174</td>
<td>121/174 = 73%</td>
</tr>
<tr>
<td>South Africa</td>
<td>TB suspects</td>
<td>70%</td>
<td>18</td>
<td>11/18 = 61%</td>
</tr>
<tr>
<td>South Africa</td>
<td>TB suspects</td>
<td>72%</td>
<td>15</td>
<td>10/15 = 67%</td>
</tr>
</tbody>
</table>
Gene Xpert MTB/RIF Assay in Non-Sputum Samples among HIV+

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Country</th>
<th>HIV Prev</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Reference Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph node aspirate</td>
<td>South Africa</td>
<td>100%</td>
<td>139/149 = 93%</td>
<td>172/195 = 88%</td>
<td>Liquid Culture</td>
</tr>
</tbody>
</table>
Gene Xpert MTB/RIF Assay in Non-Sputum Samples among HIV+

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Country</th>
<th>HIV Prev</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Reference Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph node aspirate</td>
<td>South Africa</td>
<td>100%</td>
<td>139/149 = 93%</td>
<td>172/195 = 88%</td>
<td>Liquid Culture</td>
</tr>
<tr>
<td>Biopsy Specimens</td>
<td>India</td>
<td>3%</td>
<td>105/139 = 76%</td>
<td>139/139 = 100%</td>
<td>Smear, Cx, Radiology, Clinical</td>
</tr>
</tbody>
</table>
Gene Xpert MTB/RIF Assay in Non-Sputum Samples among HIV+

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Country</th>
<th>HIV Prev</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Reference Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph node aspirate</td>
<td>South Africa</td>
<td>100%</td>
<td>139/149 = 93%</td>
<td>172/195 = 88%</td>
<td>Liquid Culture</td>
</tr>
<tr>
<td>Biopsy Specimens</td>
<td>India</td>
<td>3%</td>
<td>105/139 = 76%</td>
<td>139/139 = 100%</td>
<td>Smear, Cx, Radiology, Clinical</td>
</tr>
<tr>
<td>CSF</td>
<td>Germany</td>
<td>0%</td>
<td>N/A</td>
<td>19/19 = 100%</td>
<td>Culture</td>
</tr>
<tr>
<td>CSF</td>
<td>India</td>
<td>3%</td>
<td>2/7 = 28%</td>
<td>15/15 = 100%</td>
<td>Smear, Cx, Radiology, Clinical</td>
</tr>
</tbody>
</table>
Gene Xpert MTB/RIF Assay in Non-Sputum Samples among HIV+

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Country</th>
<th>HIV Prev</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Reference Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph node aspirate</td>
<td>South Africa</td>
<td>100%</td>
<td>139/149 = 93%</td>
<td>172/195 = 88%</td>
<td>Liquid Culture</td>
</tr>
<tr>
<td>Biopsy Specimens</td>
<td>India</td>
<td>3%</td>
<td>105/139 = 76%</td>
<td>139/139 = 100%</td>
<td>Smear, Cx, Radiology, Clinical</td>
</tr>
<tr>
<td>CSF</td>
<td>Germany</td>
<td>0%</td>
<td>N/A</td>
<td>19/19 = 100%</td>
<td>Culture</td>
</tr>
<tr>
<td>CSF</td>
<td>India</td>
<td>3%</td>
<td>2/7 = 28%</td>
<td>15/15 = 100%</td>
<td>Smear, Cx, Radiology, Clinical</td>
</tr>
<tr>
<td>Pleural Fluid</td>
<td>Germany</td>
<td>0%</td>
<td>N/A</td>
<td>103/111 = 93%</td>
<td>Culture</td>
</tr>
<tr>
<td>Pleural Fluid</td>
<td>Spain</td>
<td>NR</td>
<td>5/33 = 15%</td>
<td>34/34 = 100%</td>
<td>Smear, Culture, ADA</td>
</tr>
</tbody>
</table>
Gene Xpert MTB/RIF Assay in Non-Sputum Samples among HIV+

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Country</th>
<th>HIV Prev</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Reference Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymph node aspirate</td>
<td>South Africa</td>
<td>100%</td>
<td>139/149 = 93%</td>
<td>172/195 = 88%</td>
<td>Liquid Culture</td>
</tr>
<tr>
<td>Biopsy Specimens</td>
<td>India</td>
<td>3%</td>
<td>105/139 = 76%</td>
<td>139/139 = 100%</td>
<td>Smear, Cx, Radiology, Clinical</td>
</tr>
<tr>
<td>CSF</td>
<td>Germany</td>
<td>0%</td>
<td>N/A</td>
<td>19/19 = 100%</td>
<td>Culture</td>
</tr>
<tr>
<td>CSF</td>
<td>India</td>
<td>3%</td>
<td>2/7 = 28%</td>
<td>15/15 = 100%</td>
<td>Smear, Cx, Radiology, Clinical</td>
</tr>
<tr>
<td>Pleural Fluid</td>
<td>Germany</td>
<td>0%</td>
<td>N/A</td>
<td>103/111 = 93%</td>
<td>Culture</td>
</tr>
<tr>
<td>Pleural Fluid</td>
<td>Spain</td>
<td>NR</td>
<td>5/33 = 15%</td>
<td>34/34 = 100%</td>
<td>Smear, Culture, ADA</td>
</tr>
<tr>
<td>Stool</td>
<td>Germany</td>
<td>0%</td>
<td>2/2 = 100%</td>
<td>11/14 = 79%</td>
<td>Culture</td>
</tr>
<tr>
<td>Urine</td>
<td>Germany</td>
<td>0%</td>
<td>5/5 = 100%</td>
<td>70/75 = 93%</td>
<td>Culture</td>
</tr>
<tr>
<td>Gastric Fluid</td>
<td>Germany</td>
<td>0%</td>
<td>7/8 = 88%</td>
<td>19/19 = 100%</td>
<td>Culture</td>
</tr>
</tbody>
</table>
Gene Xpert Implementation

• Challenges to implementation
 • Study of 402 HIV/TB suspects in Durban with off-site, centralized Gene Xpert testing
 • Among 124 starting TB rx, 32 (26%) based on Gene Xpert vs. 39% based on clinical suspicion and 31% based on smear results

Gene Xpert Relevance

• POC test: results in 2-3 hours
 – 60-70% sensitive for smear -/culture + disease
 – Rifampicin resistance for rx decision
• Reference laboratory test at centralized labs
 – Early diagnosis (compared to culture)
 – Should not replace culture where culture exists
 – Requires reliable, efficient results reporting system to peripheral centers and ultimately to patients
Urine Lipoarabinomannan Assay

• Functionality
 – Lipoarabinomannan: MTB cell wall antigen
 • Also component of Actinomyces
 – Lateral flow antigen detection assay (Alere, Inc.)
 – Point-of-care urine test
 – Results in 25 minutes after sample collection
Urinary Lipoarabinomannan Assay

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>499</td>
<td>Hospitalized TB suspects</td>
<td>Automated Liquid Culture</td>
<td>67</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>499</td>
<td>Hospitalized TB suspects</td>
<td>Automated Liquid Culture</td>
<td>67</td>
<td>96</td>
</tr>
<tr>
<td>South Africa</td>
<td>235</td>
<td>Outpatient TB suspects</td>
<td>Automated Liquid Culture</td>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>397</td>
<td>Outpatient TB suspects</td>
<td>Agar culture</td>
<td>52</td>
<td>89</td>
</tr>
<tr>
<td>South Africa</td>
<td>422</td>
<td>Outpatient TB suspects</td>
<td>Automated Liquid Culture</td>
<td>32</td>
<td>98</td>
</tr>
</tbody>
</table>

Urinary Lipoarabinomannan Assay

• LAM results dependent on immune status
 – Sensitivity varies by CD4 count
 • CD4<50: 12/18 = 67%
 • CD4<100 15/29 = 52%
 • CD4<200 23/59 = 39%
 • CD4>200 1/25 = 4%

• Highly immunogenic
 – LAM antibodies detected in TB patients
 – LAM-antibody complexes decrease urinary excretion of LAM

Combining LAM with Smear for POC Diagnosis

• Prospective study of 208 TB suspects in Uganda
 – 101 confirmed TB, 107 without TB
 • Median CD4: 60
 – Sensitivities: Xpert 77%, LAM 50%, Smear 31%
 – Smear + LAM: 68% (similar to Xpert)
 – Xpert + LAM: 87% (superior to either test alone and similar to culture)

Cryptococcal Disease: The New Prevention Paradigm

- CRAG in blood & urine predates meningitis by weeks to months, enabling screening and pre-emptive treatment
- WHO and South African Clinicians’ Society now recommend blood CRAG screening for all HIV+ with CD4<100
 - South Africa, Kenya, Rwanda established screening programs
 - Many other countries in development
- Screening and pre-emptive therapy are highly cost effective (estimates: $77-266/life saved; $2-20/DALY saved)

Rajasingham et al, JAIDS, 2012
Meya et al, CID 2010
French et al, AIDS, 2002
Cryptococcal Meningitis Prevention: A New Paradigm

- Cryptococcal antigen (CRAG) positive prevalence 5-20% in SSA and SE Asia among those with advanced disease

Rajasingham et al, JAIDS, 2012
CRAG Lateral Flow Assay

• Lateral flow CRAG assay recently developed
 – Similar method to TB LAM (Immy, Inc.)
 – Detects F12D2 and 339 antigens of the cryptococcal polysaccharide capsule glucuronyxylomannan
 – Results in <15 minutes after sample collection
 – Valid for whole blood, serum, urine, cerebrospinal fluid specimens
 – $2/test in resource limited settings
 – Titers can be performed for disease burden, prognostication
CRAG Lateral Flow Assay

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>Hospitalized, Cryptococcal Meningitis</td>
<td>Serum, Plasma, and Urine</td>
<td>CSF India ink or CRAG</td>
<td>All three: $61/62$ (98%)</td>
<td>N/A</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>------------------------------------</td>
<td>------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>South Africa</td>
<td>Hospitalized, Cryptococcal Meningitis</td>
<td>Serum, Plasma, and Urine</td>
<td>CSF India ink or CRAG</td>
<td>All three: 61/62 (98%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Uganda</td>
<td>Hospitalized suspected meningitis</td>
<td>CSF</td>
<td>Any 2+ of India ink, Latex CRAG, Culture</td>
<td>47/47 (100%)</td>
<td>65/65 (100%)</td>
</tr>
</tbody>
</table>
CRAG Lateral Flow Assay

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>Hospitalized, Cryptococcal Meningitis</td>
<td>Serum, Plasma, and Urine</td>
<td>CSF India ink or CRAG</td>
<td>All three: 61/62 (98%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Uganda</td>
<td>Hospitalized suspected meningitis</td>
<td>CSF</td>
<td>Any 2+ of India ink, Latex CRAG, Culture</td>
<td>47/47 (100%)</td>
<td>65/65 (100%)</td>
</tr>
<tr>
<td>Thailand</td>
<td>Hospitalized, respiratory illness</td>
<td>Serum</td>
<td>CRAG EIA in serum</td>
<td>87/92 (95%)</td>
<td>371/373 (99%)</td>
</tr>
<tr>
<td>“</td>
<td>“</td>
<td>Urine</td>
<td>CRAG EIA in blood</td>
<td>52/74 (70%)</td>
<td>N/R</td>
</tr>
</tbody>
</table>
CRAG Lateral Flow Assay

• Evidence for superiority of the LFA
 – In paired testing, ~5x higher titers than standard latex agglutination
 – Potentially positive earlier than culture in CSF
 • One study 2/112 specimens LFA+/culture negative, were culture+ 14 days later

Jarvis et al, *CID* 2011
Kabanda et al, *CID*, 2013
Pneumocystis jirovecii Pneumonia:

- How common is PCP in sub-Saharan Africa?

<table>
<thead>
<tr>
<th>Country</th>
<th>Pub Year</th>
<th>Median CD4</th>
<th>% on PPx</th>
<th>PCP Prevalence</th>
<th>Diagnostic Technique (all underwent Bronchoscopy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rwanda</td>
<td>1994</td>
<td>111</td>
<td>0%</td>
<td>5/111 (5%)</td>
<td>Giemsa stain</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>1995</td>
<td>183</td>
<td>NR</td>
<td>21/64 (33%)</td>
<td>Silver methanamine stain</td>
</tr>
<tr>
<td>Uganda</td>
<td>2003</td>
<td>NR</td>
<td>25%</td>
<td>32/83 (39%)</td>
<td>PCP immunostain</td>
</tr>
</tbody>
</table>
Pneumocystis jerovecii Pneumonia:

- How common is PCP in sub-Saharan Africa?

<table>
<thead>
<tr>
<th>Country</th>
<th>Pub Year</th>
<th>Median CD4</th>
<th>% on PPx</th>
<th>PCP Prevalence</th>
<th>Diagnostic Technique (all underwent Bronchoscopy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rwanda</td>
<td>1994</td>
<td>111</td>
<td>0%</td>
<td>5/111 (5%)</td>
<td>Giemsa stain</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>1995</td>
<td>183</td>
<td>NR</td>
<td>21/64 (33%)</td>
<td>Silver methanamine stain</td>
</tr>
<tr>
<td>Uganda</td>
<td>2003</td>
<td>NR</td>
<td>25%</td>
<td>32/83 (39%)</td>
<td>PCP immunostain</td>
</tr>
<tr>
<td>Senegal</td>
<td>2008</td>
<td>62</td>
<td>19%</td>
<td>3/37 (8%)</td>
<td>PCP immunostain</td>
</tr>
<tr>
<td>Central African Republic</td>
<td>2008</td>
<td>199</td>
<td>40%</td>
<td>2/48 (4%)</td>
<td>PCP immunostain</td>
</tr>
<tr>
<td>Uganda</td>
<td>2012</td>
<td>74</td>
<td>60%</td>
<td>5/132 (3%)</td>
<td>PCR/Giemsa stain</td>
</tr>
</tbody>
</table>
PCP Diagnosis

• Lactate dehydrogenase
 – Highly sensitive (>90%) but lacks specificity in ill patients

• Microbiology (Geimsa stain, immunostain, PCR)
 – All with high sensitivity and specificity
 – Specimen (normal sputum vs induced sputum vs bronchoscopy) and reader dependent
1-3-D-β-Glucan

• Fungal cell wall component (not of cryptococcus)
• Serologic blood test (colorimetric test involving a cleaved enzyme), interpreted by spectrophotometry
1-3-D-β-Glucan

• Accuracy in HIV+ patients with suspected OIs (n=252):
 – Sensitivity 92%, Specificity 65% (threshold >80 pg/ml)
 – PPV 85%, NPV 80% (PCP prevalence 69%)

• Accuracy in HIV+ patients with respiratory symptoms (n=159):
 – Sensitivity 93%, Specificity 75% (threshold >80 pg/ml)
 – PPV 96%, NPV 60% (PCP prevalence 87%)
 – If prevalence 10%: 30% PPV, 99% NPV
HIV Diagnosis

• WHO Guidelines
 – HIV 1/2 serology-based testing algorithm
• Prior US guidelines
 – HIV 1/2 serology
 – Confirmatory test
 • Western blot (≥2 bands)
 • Immunofluorescence
 • P24 Ag (Genprobe)
HIV Diagnosis

N: Nucleic acid amplification test; Numbers refer to generation of HIV antibody testing

Nucleic acid (RNA)
- IgG/IgM + p24 Ag
- IgG/IgM (HIV 1 and 2)
- IgG Recombinant virus
- IgG Viral lysates

Days After HIV Infection

HIV Diagnosis

- Updated 2013 CDC HIV Diagnosis Algorithm
HIV Diagnosis

• Implications of 4th gen HIV testing in resource limited settings
 – Feasibility depends on viral load testing capacity and strong linkage to care systems
 – If no viral load testing available, difficult to interpret positive Ab/Ag test with discordant negative confirmatory immunoassay
 – If linkage systems are poor, communication of viral load result and need for HIV care challenging
 – Management of acute HIV infection remains highly debated
Point of Care CD4 Testing

• PIMA Test (Alere, Inc) point-of-care CD4

• Operations
 – Finger stick or venous blood
 – 20 minute time to result
 – $5000 machine and $6/test cartridge
Point of Care CD4 Testing

• PIMA POC accuracy in resource limited settings
 – Thai validation study in venous specimens
 • n=203, median CD4 500 (range 4–2000)
 • High overall correlation with FACS, $r^2 = 0.95$
 • Systematic negative bias with PIMA
 – PIMA CD4 counts averaged ~50 cells less than FACS scanners
 – Bias was less (~20 cells) when restricted to CD4 0-350
 – Senegal validation study in fingerstick specimens
 • n=95, median CD4 364, IQR 212-550
 • Pearson’s correlation=0.89
 • Average negative of bias of 39 cells with PIMA vs FACS
 • 91% sensitivity, 97% specificity to detect CD4 < 200
 • 91% sensitivity, 79% specificity to detect CD4 < 350
Point of Care CD4 Testing

• Role in linkage to care
 – Observational cohort study of 932 HIV-infected patients enrolling in care in Mozambique
 – Improvements in major programmatic indicators
 • LTFU decreased from 57% to 21%
 • Time from enrollment to ART initiation: 48 to 20 days
 • Primarily decrease in time to staging: 32 to 3 days

Technology Pipeline – Viral Load

- Liat
- WAVE 80
- EOSCAPE
- Micronics
- ALL
- Alere
- SAMBA VL
- Cavidi AMP
- Gene Xpert
- Biohelix
- NWGHF VL
- Lumora
- 2012
- 2013
- 2014
- 2015
- 2016

*Estimated - timeline and sequence may change
Point of Care Resistance Testing?

• Multiplex PCR-like technology
 – “Gene Xpert” for HIV

• Complex problem
 – Regimen specific
 – Although some classes (e.g. NNRTIs/INSTIs) have highly predictive patterns, others (e.g. protease inhibitors, NRTIs) are complex
 – Other classes (e.g. entry inhibitors) do not rely on genetic mutations to determine resistance
Summary

• TB diagnosis: Gene Xpert MTB/RIF
 – Detects 65% of smear-/culture+ in HIV+ as POC test
 • Accurate RIF-susceptibility testing
 – Depends on communication system to augment culture as a centralized laboratory assay
 – Accuracy in non-sputum specimens to be determined

• TB diagnosis: Urine LAM
 – POC care, $3-4, no lab infrastructure required
 – 30-60% sensitive versus culture for pulmonary TB in advanced HIV disease
 – Highest utility in hospitalized patients or CD4<50
 – Sensitivity decreases with increasing CD4 count (approaches 0% with CD4 > 200)
Summary

• Cryptococcal CRAG assay
 – $2/test, <15 minutes, no infrastructure required
 – Near 100% sensitivity in blood, urine, CSF for meningitis
 • Titers predict mortality
 – ~95% sensitive in blood, ~70-80% sensitive in urine for cryptococcemia/earlier stages of disease

• β-glucan for diagnosis of PCP
 – Blood spectrophotometry assay (requires lab infrastructure)
 – Usefulness limited in low-prevalence settings
Summary

• HIV diagnosis
 – 4th generation HIV tests detect both IgM/IgG antibodies and p24 antigen
 – Detect HIV infection at ~20 days
 – Discordant results challenging to interpret in absence of VL testing

• PIMA Point-of-Care CD4 testing
 – Rapid, low-cost test ($6/specimen)
 – Good overall correlation, with systematic bias towards lower CD4 counts (mostly at higher CD4 counts)
 – Implementation can improve linkage to care
Thank you!

• Conference Organizers
 – Raj Gandhi, Henry Sunpath, Yunus Moosa Karen Moodley

• Clinical Mentors
 – Raj Gandhi, Nesli Basgoz, Cameron Ashbaugh, Paul Sax

• Research Mentors
 – David Bangsberg, Alexander Tsai, Jessica Haberer, Jeffrey Klausner

• Life Mentors
 – My wife and daughter
Questions?
References: HIV/TB Diagnosis

References: MTB/RIF Gene Xpert

References: Urine LAM TB Test

References: CRAG LFA

References: PCP Diagnosis and Epidemiology in SSA

References: CD4 POC Testing

