Infection Prevention and Control for Tuberculosis

A.Willem Sturm, MD, PhD
Provincial Department of Health
KwaZulu-Natal
South Africa
Loss of fitness, 1953

- Middlebrook, G., and M. L. Cohn

 “Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli”

 (Science, 1953, 118:297-299)
Regaining fitness

- Compensatory mutations
- ? Other mechanisms

highly successful resistant strains

- Beijing
- F28
- F16/LAM4/KZN

? over-compensation
Competition in mice: fitness test

(collaborative project with Duke University, Sunhee Lee et all)
Cytotoxicity of F15/LAM4/KZN isolates on alveolar epithelium

Average % cytotoxicity

\(P < 0.0001 \)

(Sturm laboratories, KZN)
Bacterial burden of F15/LAM4/KZN in lung and spleen and lung pathology

(collaborative project with Duke University, Sunhee Lee et all)
Virulent (fit), resistant *M. tuberculosis* strains are a reality!

How do we deal with that?
TB control = prevention of transmission

• Decreasing infectiousness of patients
• Prevention of transmission
 – infection prevention in health care facilities
 – infection prevention in public transport and buildings
 – infection prevention at home
• Prophylaxis for the non-infected
 – vaccination
 – prophylactic medication
TB control = prevention of transmission

- Decreasing infectiousness of patients
- Prevention of transmission
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- Prophylaxis for the non-infected part of the population
 - vaccination
 - prophylactic medication
XDR in KZN = TDR

<table>
<thead>
<tr>
<th>Medicine</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>isoniazid</td>
<td>R</td>
</tr>
<tr>
<td>rifampicin</td>
<td>R</td>
</tr>
<tr>
<td>pyrazinamide</td>
<td>R</td>
</tr>
<tr>
<td>ethambutol</td>
<td>R</td>
</tr>
<tr>
<td>streptomycin</td>
<td>R</td>
</tr>
<tr>
<td>ethionamide</td>
<td>R</td>
</tr>
<tr>
<td>ofloxacin</td>
<td>R</td>
</tr>
<tr>
<td>moxifloxacin</td>
<td>R</td>
</tr>
<tr>
<td>kanamycin</td>
<td>R</td>
</tr>
<tr>
<td>amikacin</td>
<td>R</td>
</tr>
<tr>
<td>capreomycin</td>
<td>R</td>
</tr>
<tr>
<td>PAS</td>
<td>S</td>
</tr>
<tr>
<td>linezolid</td>
<td>S</td>
</tr>
<tr>
<td>meropenem/clavulanic acid</td>
<td>S</td>
</tr>
</tbody>
</table>
Different epidemics per geographical region

• Western Cape province
 – MDR transmitted
 – XDR not transmitted

• KwaZulu-Natal
 – MDR transmitted (Beijing, F28 and F15/LAM4/KZN)
 – XDR transmitted: F15/LAM4/KZN only
TB control = prevention of transmission

- Decreasing infectiousness of patients
- Prevention of transmission
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- Prophylaxis for the non-infected
 - vaccination
 - prophylactic medication
Prevention of transmission in health care facilities

• Administrative control
 – triage

• Environmental control
 – ventilation
 – airflow control

• Personal protection
 – masks/respirators

Where is the problem?
Risk assessment in specialised TB facilities in KZN

IPC unit
KZN Department of Health
Challenges with triage

- At which point in the patient flow?
- What to do with (many) coughing patients?

over-crowding in OPD where?
Challenges with environmental control

• Building structure
 – ventilation systems
 – ceiling height
 – isolation wards

• Overcrowding
 – ward
 – OPD

• Cough areas/booths
Challenges with personal protection

• Adherence
 – unpleasant for user
 – unfriendly for patients

• Confusing information
 – when to discard?
Filter efficiency

- Particle capture efficiency of electret (charged) filters decreases with filter load
- Maximum filter load for N series masks ≥ 200 mg

\[\text{efficiency insufficient} \]
\[\text{bacteria first} \]
Challenges with personal protection

• Adherence
 – unpleasant for user
 – unfriendly for patients

• Confusing information
 – when to discard?

• Fit-testing
 – consistancy in donning the mask
 – procurement system
Risk assessment in specialised TB facilities in KZN

• All 8 facilities had major challenges in all areas

• Need for structural changes in OPDs/clinics and wards
 – no short term solutions
 – maximise ventilation systems

• Need for optimisation of personal protection
TB control = prevention of transmission

- Decreasing infectiousness of patients
- **Prevention of transmission**
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- **Prophylaxis for the non-infected part of the population**
 - vaccination
 - prophylactic medication
Infection prevention outside health care facilities

• Community education
 – household education/counseling
 – targeted group education
TB control = prevention of transmission

- Decreasing infectiousness of patients
- Prevention of transmission
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- Prophylaxis for the non-infected part of the population
 - vaccination
 - prophylactic medication
INH resistance in culture
confirmed cases in KZN
1 Jan 2006 – 30 June 2007
n=25537

<table>
<thead>
<tr>
<th>Category</th>
<th>No. of patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>6543</td>
<td>25.6</td>
</tr>
<tr>
<td>Single INH resistant</td>
<td>807</td>
<td>3.2</td>
</tr>
<tr>
<td>MDR</td>
<td>5377</td>
<td>21</td>
</tr>
<tr>
<td>pre-XDR</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>XDR</td>
<td>610</td>
<td>2.4</td>
</tr>
<tr>
<td>others</td>
<td>1785</td>
<td>7</td>
</tr>
</tbody>
</table>
Botswana IPT trial

- INH resistance in those receiving 36 mths IPT: 14%
- Background INH resistance: 9%
- Increase: 5% (55% in 3 years)
Extrapolation of Botswana results to KZN

<table>
<thead>
<tr>
<th></th>
<th>Background resistance</th>
<th>Resistance after 3 years IPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botswana</td>
<td>9 %</td>
<td>14 %</td>
</tr>
<tr>
<td>KZN</td>
<td>26 %</td>
<td>40.3%</td>
</tr>
</tbody>
</table>
Public health responsibility

Should we introduce IPT everywhere or allow for differential approach?
Back to basics

• The current epidemic in KZN is the result of:

 – a high density of TB transmitters in the population

 – a high density of highly TB susceptible individuals in the population (the HIV infected)
Back to basics

• We need to decrease both these groups of individuals!
• How?
 – Active, early case finding
 • before patients become infectious
 • before a productive cough develops
 – Early ARV treatment
 • before the CD4 count starts dropping
 • immediately on diagnosis (active case finding)
Acknowledgements

• The IPC team
 – Prashini Moodley
 – Jessica Thompson
 – Alcino Pillay
 – Loshni Ganas
 – Lab. technologists

• The scientific team
 – Prashini Moodley
 – Bisi Ashiru
 – Sunshee Lee
 – William Jacobs Jr
 – Masters students
Thank you