Diagnostic Test
HIV Resistance Test

Thumbi Ndung'u, BVM, PhD.
Nelson R. Mandela School of Medicine
Evolution of Viral Mutations

- Mutations arise because HIV-1 RT makes spontaneous errors (1 in 10^4)
- HIV-1 genome is 10,000 (10^4) bases long, therefore 1 error each time the genome is replicated
- Production of virus = 10^9 to 10^{10} virions per day → quasispecies
- Every possible mutation present in quasispecies before ARV therapy
Selection of Resistant strains

Treatment begins

Viral load

Time

Drug-susceptible quasispecies

Drug-resistant quasispecies

Selection of resistant quasispecies

Incomplete suppression

- Inadequate potency
- Inadequate drug levels
- Inadequate adherence
- Pre-existing resistance
Mutations described in the following way: e.g. M184V

- Initial letter represents the wild-type amino acid
- Number represents the mutated codon
- End letter represents the mutant amino acid
Patterns of resistance

1. PIs
 - Primary mutations:
 - V32I, G48V, I50V, V82A/F/T/S, I84V and L90M.
 - Secondary/accessory mutations:
 - 46, 47, 53, and 54
 - Polymorphisms associated with resistance:
 - 10, 20, 36, 63, 71, 77, and 93
Mutations associated with resistance to PIs

<table>
<thead>
<tr>
<th>Comments?</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>50V</td>
</tr>
<tr>
<td>50L</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>84</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>47</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>73</td>
</tr>
<tr>
<td>88</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>77</td>
</tr>
<tr>
<td>93</td>
</tr>
</tbody>
</table>

- High Level Resistance
- Intermediate Resistance
- Low Level Resistance
- Contributes to Resistance
- No Resistance
- Unknown
- Hypersensitivity
Patterns of resistance (cont)

2. NRTIs
 - Thymidine Analog Mutations (TAMS)

 - Selected by AZT and/or d4T
 - Accumulation of mutations

 - 3TC
 - M184V

The OH group (essential for continuation of the growing chain) is absent in AZT and d4T.
Effect of TAMS and M184V

- Cross-resistance with d4T, ddI, ddC, 3TC
- 2 TAMS + M184V significantly reduces potency of ABC
- ≥3 TAMs including M41L or L210W significantly reduces activity of TDF
- M184V (3TC mutation) reverses the effect of the T215Y/F
- but, M184V effect is lost with multiple TAMS
3. NNRTIs
 - NVP (Nevirapine)
 - L100I, K103N, V106A/M, V108I, Y181C/I, Y188C/L/H, G190A
 - EFV (Efavirenz)
 - L100I, K103N, V106M, V108I, Y181C/I, Y188L, G190A/S, G225H
How do you measure drug resistance?

Genotyping:
Indirect assay: Detects drug resistance mutations that are present in the relevant virus genes.

Phenotyping:
Direct assay: Measures the ability of the virus to grow in various concentrations of antiretroviral drugs.
Genotyping using the Viroseq Kit

Load samples onto ABI 3100
Sequence Analysis
http://hivdb.stanford.edu/
Stanford HIV Drug Resistance Database

Database Query Pages

- **Protease inhibitors**, **RT inhibitors**
 Retrieve sequences of isolates from persons receiving a selected antiretroviral therapy

- **Protease mutations**, **RT mutations**
 Retrieve sequences of isolates containing selected mutations

- **Protease inhibitor susceptibilities**, **RT inhibitor susceptibilities**
 Retrieve published drug susceptibility data for isolates with selected mutations

 Mutation profiles: **Protease**, **RT**, **Position summary**

 Retrieve summary mutation data according to treatment and subtype

Other pages: **References**, **Advanced query pages**, **GenBank**, ...

Sequence Analysis Programs

- **HIVseq**
 Compare new RT and protease sequences to published sequences with the same mutations.

- **HIVdb**
 Infer drug resistance to 17 available drugs using rules hyperlinked to data within the database.

 Release notes for the above programs, for creating algorithms using the **Algorithm Specification Interface (ASI)**, and for comparing algorithms (**HIValgs**)

Drug Resistance Notes

- **NRTI Notes**, **NNRTI Notes**, **PI Notes**
 Overview of HIV drug resistance with links to relevant database entries

- Copyright 2005-2015, Stanford University, AIDS Research Institute
<table>
<thead>
<tr>
<th>Protease inhibitors mutations</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Major resistance</td>
<td>M461, I54V, L76V, V82A, L90M</td>
<td></td>
</tr>
<tr>
<td>Minor resistance</td>
<td>L10FI, Q58E, A71V</td>
<td></td>
</tr>
<tr>
<td>Interpretation</td>
<td>High level resistance</td>
<td>Atazanavir [ATV], fosamprenavir [FPV], indinavir [IDV], lopinavir [LPV], nelfinavir [NFV], saquinavir [SQV]</td>
</tr>
<tr>
<td>Reverse transcriptase inhibitors (RTI) mutations</td>
<td>Intermediate resistance</td>
<td>Darunavir [DRV] and tipranavir [TPV]</td>
</tr>
<tr>
<td>Non-nucleoside reverse transcriptase inhibitor (NNRTI)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Interpretation</td>
<td>High level resistance</td>
<td>Lamivudine [3TC], abacavir [ABC], zidovudine [AZT], stavudine [D4T], emtricitabine [FTC]</td>
</tr>
<tr>
<td>Intermediate resistance</td>
<td>Didanosine [DDI], tenofovir [TDF]</td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>Delavirdine [DLV], efavirenz [EFV], etravirine [ETR], and nevirapine [NVP]</td>
<td></td>
</tr>
</tbody>
</table>
Final Diagnosis

Multidrug resistant HIV
References

- http://hivdb.stanford.edu
- http://www.hivresistanceweb.com
- http://www.hivatis.org
- http://hiv-lanl.gov/seq-db.html