

Addressing challenges in treating **TB-HIV** co-infected patients

The SAPiT Trial: Starting Antiretroviral therapy at three Points in TB

Dr Kogie Naidoo

Presented at the

3rd ANNUAL WORKSHOP ON ADVANCED CLINICAL CARE (AWACC) - AIDS, DURBAN 2009, 1 October 2009 On behalf of:

Salim Abdool Karim, Anneke Grobler, Nesri Padayatchi, Andrew Gray, Jacqueline Pienaar, Tanuja Gengiah, Gonasagrie Nair, Sheila Bamber, Aarthi Singh, Munira Khan, Wafaa El-Sadr, Gerald Friedland and Quarraisha Abdool Karim

Global & South African TB and HIV epidemics in 2007

HIV

- Globally:33 million HIV +ve
- South Africa: 5.4 million HIV +ve

TB

- Globally:9.2 million cases of TB
- South Africa:341,165 cases of TB

TB - HIV co-infection

- Globally:
 - 700 000 cases & 230 000 deaths
- South Africa:

~250 000 cases (HIV-TB co-infection = 70%)

TB deaths per 100,000 population - 2007

 TB - leading cause of morbidity and mortality in HIV/AIDS patients

Prevalence of HIV and HIV-related diseases in the adult medical wards of a tertiary hospital in Durban, South Africa

International Journal of STD & AIDS 2001; 12: 386-389

M Colvin MS MBChB¹, S Dawood MBChB FCP², I Kleinschmidt MSc¹, S Mullick MSc MBChB³ and U Lallo MBChB MD²

¹Medical Research Council, Durban, South Africa, ²Medical School, University of Natal Durban and ³Reproductive Health Research Unit, Durban, South Africa

 Higher TB associated CFR in HIV pos vs HIV neg despite effective chemotherapy Factors associated with an increased case-fatality rate in HIV-infected and non-infected South African gold miners with pulmonary tuberculosis

INT J TUBERC LUNG DIS 4(8):705-712 © 2000 IUATLD

G. J. Churchyard,* I. Kleinschmidt,† E. L. Corbett,‡ J. Murray, §¶ J. Smit,** K. M. De Cock‡

- Effective mechanism of identifying patients eligible for HAART
- Several solvable challenges in TB-HIV integration

- 20 TB patients started on ART
- Good adherence and clinical response
- Pilot show integration of TB and HIV treatment is feasible

Implementing antiretroviral therapy in resourceconstrained settings: opportunities and challenges in integrating HIV and tuberculosis care

Salim S. Abdool Karim^{a,b}, Quarraisha Abdool Karim^{a,b}, Gerald Friedland^c, Umesh Lalloo^a and Wafaa M. El Sadr^{b,d} on behalf of the START project*

AIDS 2004, 18:975-979

A Pilot Study of Once-Daily Antiretroviral Therapy Integrated With Tuberculosis Directly Observed Therapy in a Resource-Limited Setting

Christopher Jack, MBChB, * Umesh Lalloo, MBChB, MD, * Quarraisha Abdool Karim, PhD, * Salim Abdool Karim, MBChB, PhD, * Wafaa El-Sadr, MD, MPH, † Sharon Cassol, PhD, * † and Gerald Friedland, MD§

(J Acquir Immune Defic Syndr 2004;36:929-934)

Summary: To determine the feasibility and effectiveness of integrating highly active antiretroviral therapy (HAART) into existing tube-realized directly observed therapy (TB/DCT) programs, we reTuberculosis (TB) is a major cause of morbidity and mortality among persons with HIV disease worldwide, parti-plarly in resource-near settings. The province of KwaZuhi

TB and HIV Integration Challenges

Programmatic

- Is it feasible and practical
- Case finding & case holding
- Contact tracing
- HCW & patients perspectives

Therapeutic

- When to start?
- Which ARVs to start with?
- Adherence
- Drug- Drug interactions

Clinical

- Additive toxicities
- Immune Reconstitution (IRIS)
- Changing TB clinical features

TB Diagnostics

- Smear negative TB
- Rapid diagnosis (resistance)
- Extra-pulmonary TB

TB Prevention

- Better vaccines
- Effective prophylaxis
- Infection control

TB Therapy

- Shorter duration
- New drugs

Policy and Planning

- Resource allocation
- Practical implementation

Challenges in TB-HIV co-infection: When to start ART in relation to TB treatment?

- Why initiate ART during TB treatment?
 - To halt HIV progression & avert high TB-HIV mortality
- Why not initiate ART in TB treatment?
 - Drug interactions bet Rifampin & some ARVs
 - Pill burden / tolerability 4 TB drugs + 3 ARVs
 - Multiple and overlapping toxicities
 - Increased risk of immune reconstitution syndrome
- Current treatment based on observational data, clinician judgement & expert opinion:
 - High variability & lack of integration of TB-HIV care
 - Country guidelines based on WHO guidance

SAPiT: Starting Antiretroviral therapy (ART) in three Points in TB

Primary Objective:

To determine the optimal time to initiate ARVs in TB patients

Inclusion Criteria:

- Smear +ve & on standard TB treatment regimens
- HIV positive with CD4 count < 500 cells/mm³
- Women must agree to use contraception (efavirenz)

Endpoints

- 1º All-cause mortality
- 2º Tolerability, Toxicity, Viral Load, TB outcomes & Immune Reconstitution Inflammatory Syndrome (IRIS)

Study design and intervention

- Design: Open-Label Randomized Controlled Trial
- Randomized to one of 3 arms:
 - **Arm 1:** ART initiated during intensive phase of TB treatment
 - Arm 2: ART initiated after intensive phase of TB treatment
 - Arms 1 & 2 combined: Integrated TB-HIV treatment
 - Arm 3: Sequential treatment ART initiated after TB treatment completed
- TB treatment: Standard TB regimen
- Cotrimoxazole prophylaxis: provided to all patients
- ART: Didanosine (ddl) + Lamivudine (3TC) + Efavirenz
 Once-a-day treatment integrated with TB-DOT

Status of the trial at Safety Monitoring Committee review (September 2008)

Safety Monitoring Committee review and recommended:

- Start ART iimmediately n all sequential arm patients (ie. to halt the sequential treatment arm)
- -Continue the two integrated treatment arms in the trial

Results: Baseline Characteristics

Baseline Characteristic	Integrated Arm	Sequential Arm	p-value
Age in years (SD)	34.4 (8.38)	33.9 (8.18)	0.48
Gender - % male	48.7%	52.1%	0.45
CD4 count cells/mm³ (SD)	181 (136.2)	167 (124.1)	0.22
Log viral load (SD)	5.00 (0.91)	5.12 (0.74)	0.12
WHO stage 4	4.9% (n=21)	4.7% (n=10)	1.00
MDR-TB cases (%)	3.5 % (n=15)	3.3% (n=7)	1.00

Outcome at halt of sequential arm: Mortality rates

	Integrated Treatment Arm n = 429	Sequential Treatment Arm n = 213
Number of deaths	25	27
Person-years of follow-up	466	222
Mortality rate per 100 person-years	5.4	12.1

Hazard Ratio: 0.44 (95% CI: 0.25 to 0.79); p = 0.003

56% lower mortality with integrated TB-HIV treatment

Mortality rates in CD4 count strata

 Reduction in mortality in the Integrated arm is present in patients with CD4 <= 200 and patients with CD4 > 200 cells/mm³

	CD4 count			
	≤ 200 cells/mm³		> 200 cells/mm ³	
Integrated arm:				
# dead/ py (n)	23/	/281 (273)	2/1	86 (156)
Mortality rate (95% CI)	8.2	(5.2 - 12.3)	1.1	(0.1 - 3.9)
Sequential arm:				
# dead / py (n)	21/	/137 (138)	6.	/86 (75)
Mortality rate (95% CI)	15.3	(9.57 - 23.5)	7.0	(2.6 -15.3)
Rate Ratio (95% CI)	0.53	3 (0.28-1.01)	0.15	(0.02-0.86)
	ķ	o=0.051	р	=0.022

Incidence of IRIS and ART adherence

	Integrated arm	Sequential arm
% with IRIS #	12.1% (52/429)	3.8% (8/213)*
Hospitalization due to IRIS	10/52	0/8
Viral load <1000 at 12 mths #	91.0% (201/221)	80.0% (72/90)
ART Adherence (pill count)	(n = 344)	(n = 132)
< 90%	3.2% (11)	5.3% (7)
90-95%	6.4% (22)	7.6% (10)
>95%	90.4% (311)	87.1% (115)

p<0.05

*Note: 83% Integrated arm vs 62% Sequential arm patients had initiated ART – data provisional

TB outcomes in SAPiT trial

	Integrated arm	Sequential arm	
TB Outcome	n = 331	n = 165	
	% (# cases)	% (# cases)	
Cure	60.7% (201)	59.4% (98)	
Successful completion	17.5% (58)	13.9% (23)	
Successfully treated	78.2% (259)	73.3% (121)	
Died	5.7% (19)	9.7% (16)	
Treatment interruption	3.9% (13)	7.9% (13)	
Treatment failure	0.6% (2)	0.6% (1)	
Unknown	11.5% (38)	8.5% (14)	

Conclusions

- Clinical trial evidence for combining TB & HIV treatment - reduces mortality by 56% in co-infected patients with CD4 < 500
- IRIS cases and hospitalizations increased by initiation of ART during TB treatment
- TB outcomes similar in both arms mortality in the sequential treatment arm occurs late mainly after TB treatment is completed, hence TB program is not aware
- Viral suppression (VL<1000) at 12 months higher in the Integrated treatment arm
- When to start ART during TB treatment?
 Awaiting completion of the SAPiT trial the 2 integrated treatment arms are continuing.....

Limitations

- All-cause mortality- underestimates the potential impact of integrated HIV-tuberculosis treatment on deaths related only to tuberculosis and HIV
- Ambulant adult patients enrolled
- Focus on smear pulmonary PTB
- Empiric confirmation of results required in patients with SNTB, EPTB, and in patients with more severe form of TB eg admitted patients, disseminated TB etc

Implications of the findings

Programmatic implementation implications:

- All TB patients should be offered an HIV test & CD4 count
- TB-HIV co-infected patients with CD4 <500 should be initiated on ART during TB treatment
- Vigilance for the diagnosis and management of IRIS & toxicities
- Monitor the proportion of TB-HIV patients on ART as an indicator of the performance of ART rollout programs

Implementation in South Africa:

- ~150,000 more TB patients initiated on ART annually
- ~10,000 deaths averted

Acknowledgements

- President's Emergency Plan for AIDS Relief (PEPfAR)
- Global Fund & Enhancing Care Initiative
- eThekwini Metro & staff of Prince Cyril Zulu clinic
- CAPRISA SAPiT Team & Community Support Group
- The SAPiT Safety Monitoring Committee: Wafaa El-Sadr, Gerald Friedland, Gavin Churchyard, Doug Taylor & Mark Weaver
- KwaZulu-Natal Provincial Department of Health
- University of KwaZulu-Natal & Columbia University

CAPRISA was established by the Comprehensive International Program of Research on AIDS of the US National Institutes of Health (grant# AI51794)

Acknowledgements

- President's Emergency Plan for AIDS Relief (PEPfAR)
- Global Fund & Erich Control
- eThekwini Met
 We gratefully
- CAPRISA SFacknowledge the dedication port Group
- The SAPiT s and commitment
 Wafaa El-Sa of the study participants
 Doug Taylor without whom this research
- KwaZulu-Nata would not be possible if Health
- University of Kwa

CAPRISA was established by the Comprehensive International Program of Research on AIDS of the US National Institutes of Health (grant# AI51794)

