Antiretroviral Therapy: New Drugs, New Formulations, New Ideas, New Strategies

Prof. Ian Sanne
Director Clinical HIV Research Unit
University of the Witwatersrand
and
Managing Director Right to Care
Why We Need New Antiretroviral Agents

- Treatment-Naive Individuals
 - Well tolerated, highly active, convenient antiretroviral therapy for ALL individuals who need treatment
 - Women of child-bearing potential
 - Individuals with TB and other complex medical illnesses
 - Patients with transmitted drug-resistant virus
 - Risk of minority variants
 - Very long term toxicity of therapy is not known
Why We Need New Antiretroviral Agents

- Treatment-Experienced Individuals
 - Expand treatment choices
 - Avoid complex regimens and toxic agents
 - Full suppression of HIV replication in patients with resistant HIV-1
 - Developed World – multi-drug resistant variants
 - 5-10% of patients in care have \geq 3 class resistance
 - Greater success in patients with less extensive resistance?
 - Developing World – highly NRTI-resistant variants
 - Currently limited treatment choices
How Might Therapy of Treatment Naïve Patients Change?

- Alternatives to FDC of EFV or NVP plus 2 NRTI
- Alternatives to RTV-boosted PI
- Alternatives to NRTI
Question

- With 1st or 2nd line therapy which agent gives your patients the most trouble with tolerability?
 1. Efavirenz
 2. Nevirapine
 3. Ritonavir
 4. Tenofovir
 5. Stavudine
 6. Zidovudine
 7. Atazanavir
 8. Other
Alternatives To Efavirenz or Nevirapine
Integrase Inhibitors

- **Raltegravir**
 - Potent, rapid suppression; very well tolerated over 48 wks
 - 97% of subjects in BENCHMRK had initial response
 - High risk of resistance in treatment failure
 - Twice daily dosing with modest drug interactions
 - Metabolized by glucuronidation

- **Elvitegravir**
 - Potent in phase Ila and IIb studies
 - Phase III study started
 - Cross resistance likely with raltegravir
 - Once daily but requires RTV co-administration.

A high likelihood of success is dependent on additional active agents
Rilpivirine (TMC278) vs EFV: HIV-1 RNA < 50 copies/mL at Week 96

- Treatment-naive patients with HIV-1 RNA ≥ 5000 copies/mL randomized to rilpivirine or efavirenz, both plus 2 NRTIs (ITT-TLOVR)

Adverse Events and Resistance Similar with Rilpivirine vs Efavirenz

- Incidence of any adverse events similar in rilpivirine and efavirenz arms
 - More rash with efavirenz vs rilpivirine: 21% vs 9% ($P < .01$)
 - More nervous system disorders with efavirenz vs rilpivirine: 48% vs 31% ($P < .01$)
 - More neuropsychiatric adverse events with efavirenz vs rilpivirine: 21% vs 16%
- NNRTI resistance associated mutations emerged at a similar rate with rilpivirine vs efavirenz
- QTc interval increased in all study arms through Week 48, then plateaued
 - QTc prolongation lowest with 25 mg/day dose which has been selected for ongoing phase III trial

ECHO and THRIVE

- Two parallel, placebo-controlled Phase III studies of rilpivirine (TMC 278) 25 mg once daily dose
- ECHO = RPV vs. EFV each with TDF/FTC
 - N = 680 patients; fully enrolled with primary endpoint 48 wks
- THRIVE = RPV vs. EFV with TDF/FTC or ABC/3TC or ZDV/3TC
 - N = 680; still enrolling as of 3/29/09
Significantly shorter time to virologic response with RAL vs EFV ($P < .001$)

- Significantly greater CD4+ cell count increase with RAL vs EFV
 - +189 vs +163 cells/mm3; Δ 26 cells/mm3 (95% CI: 4-47)

Virologic Outcome at Week 48 by BL Factors

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Patients with HIV-1 RNA < 50 c/ml, % (Observed-Failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raltegravir</td>
</tr>
<tr>
<td>Overall</td>
<td>92</td>
</tr>
<tr>
<td>Baseline Plasma HIV-1 RNA</td>
<td></td>
</tr>
<tr>
<td><100,000 copies/mL</td>
<td>93</td>
</tr>
<tr>
<td>>100,000 copies/mL</td>
<td>91</td>
</tr>
<tr>
<td>Baseline CD4+ Cell Count</td>
<td></td>
</tr>
<tr>
<td>≤ 50 cells/mm³</td>
<td>84</td>
</tr>
<tr>
<td>> 50 to ≤ cells/mm³</td>
<td>89</td>
</tr>
<tr>
<td>> 200 cells/mm³</td>
<td>94</td>
</tr>
<tr>
<td>Hepatitis B/C Coinfection</td>
<td></td>
</tr>
<tr>
<td>B or C positive</td>
<td>94</td>
</tr>
<tr>
<td>Both B and C negative</td>
<td>91</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>91</td>
</tr>
<tr>
<td>Female</td>
<td>96</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>92</td>
</tr>
<tr>
<td>Black</td>
<td>89</td>
</tr>
<tr>
<td>Asian</td>
<td>91</td>
</tr>
<tr>
<td>Hispanic</td>
<td>93</td>
</tr>
</tbody>
</table>

Protocol 004: 96-Week Results of RAL 400mg bid vs. EFV in Treatment-Naive Pts (NC = F)

Using Observed Failure approach:
RAL 92% and EFV 91%

*After Week 48, patients in all RAL groups continued at 400 mg bid
All patients received TDF/3TC

Raltegravir Once Daily

- Phase III randomized double blind placebo controlled trial
 - N = 750
- RAL 800 mg once daily with TDF/FTC vs. RAL 400 mg twice daily with TDF/FTC
- Actively enrolling – lead cohort for safety
Maraviroc Treatment Naïve MERIT Study: Phase 3 Trial Design

Randomization 1:1

Efavirenz (EFV 600 mg QD) + ZDV/3TC*

Maraviroc (MVC 300 mg BID) + ZDV/3TC*

Primary analysis

Screening (6 weeks) 0 48 wk 96 wk

Patient eligibility criteria:
- R5 HIV-1 infection
- No evidence of resistance to EFV, ZDV, or 3TC

MVC QD arm discontinued at end of Phase 2b (week 16) Due to evidence of decreased activity compared to EFV

*ZDV = Zidovudine, 3TC = Lamivudine
CCR5 Inhibitor Virologic Failure

- Two mechanisms
 - Emergence of pre-existing X4 or dual tropic variants
 - MOTIVATE 1 wk 48, ~ 50% of patients in QD arm and ~ 63% of BID arm with virologic failure had D/M or X4 virus
 - “Cross resistant” by definition
 - No immunologic consequences observed so far
 - HIV remains R5 but uses receptor with compound bound
 - Difficult to detect without phenotype
 - Analysis of MVC resistance in 36 patients with R5 virus at failure
 - 43% had evidence of MVC resistance
 - Cross resistance btwn R5 inhibitors may or may not occur
Enhanced Phenotypic Tropism Assay Detects Low Levels of X4-Using Virus

- Enhanced assay highly sensitive in detecting CXCR4-using HIV variants comprising 0.3% of viral populations
 - Detection improved approximately 30-fold over original assay

Reanalysis of Virologic Efficacy in MERIT With Enhanced Tropism Assay

- Enhanced phenotypic tropism assay resulted in reclassification of 15% of patients from R5 to D/M at screening
 - Noninferiority criteria (rates of HIV-1 RNA < 50 copies/mL) met when D/M patients excluded

Graph: Comparison of HIV-1 RNA < 50 copies/mL at Week 48

- **Overall**
 - MERIT: 69.3%
 - MERIT-ES: 65.3%

- **By Baseline Viral Load (copies/mL)**
 - MERIT:
 - < 100,000: 68.3%
 - ≥ 100,000: 68.5%
 - MERIT-ES:
 - < 100,000: 71.6%
 - ≥ 100,000: 69.6%

- **By Baseline Viral Load (copies/mL)**
 - EFV + ZDV/3TC
 - MERIT:
 - < 100,000: 66.0%
 - ≥ 100,000: 59.6%
 - MERIT-ES:
 - < 100,000: 72.1%
 - ≥ 100,000: 71.8%
 - MVC + ZDV/3TC
 - MERIT:
 - < 100,000: 62.5%
 - ≥ 100,000: 64.2%

MERIT: Wk 96 Response With MVC vs EFV in Naive Pts

- MERIT-ES: reanalysis of MERIT trial using enhanced phenotypic tropism assay suggested noninferiority of MVC to EFV when additional pts with D/M-tropic virus identified by enhanced assay excluded[1]

- Wk 96 efficacy analysis included only MERIT-ES population[2]

- Similar proportions in MVC and EFV with VL < 50 copies/mL at Wk 96

- CD4+ increase at Wk 96 greater with MVC vs EFV (+212 vs +171 cells/mm³)

- EFV more likely discontinued for AEs: 15.5% vs 6.1% on MVC

- MVC more likely discontinued for insufficient response: 12.5% vs 5.9% on EFV

- Higher levels of dyslipidemia on EFV

- 5/15 pts who discontinued EFV for tolerability developed NNRTI mutations in follow-up[3]

Alternatives to Ritonavir

- PK enhancers with HIV activity
- Co-formulation in FDC
GS-9350: A Pharmacoenhancer Without Anti-HIV Activity

AA Mathias, P German, M Lee, C Callebaut, L Xu, L Tsai, B Murray, H Liu, K Yale, D Warren and BP Kearney

Gilead Sciences
Foster City, CA, USA
GS-9350: A Pharmacoenhancer Without Anti-HIV Activity

- Potent, irreversible (mechanism-based) inhibition of CYP3A
- No anti-HIV activity
- Greater CYP450 enzyme inhibition specificity
- Less induction of drug metabolizing enzymes and transporters
- Reduced potential for lipid abnormalities
- Improved physicochemical properties
Elvitegravir PK

<table>
<thead>
<tr>
<th>Mean (CV%) EVG PK (n = 42)</th>
<th>GS-9350 100 mg FDC</th>
<th>GS-9350 150 mg FDC</th>
<th>EVG + RTV 100 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC<sub>τ</sub> (ng.hr/mL)</td>
<td>21100 (25.4)</td>
<td>27000 (29.4)</td>
<td>22500 (23.4)</td>
</tr>
<tr>
<td>C<sub>max</sub> (ng/mL)</td>
<td>2250 (26.3)</td>
<td>2660 (27.6)</td>
<td>2500 (32.1)</td>
</tr>
<tr>
<td>C<sub>τ</sub> (ng/mL)</td>
<td>282 (60.4)</td>
<td>490 (52.9)</td>
<td>409 (40.5)</td>
</tr>
</tbody>
</table>

- GS-9350 effectively boosts EVG within FDC tablet
- High EVG trough concentrations maintained w/ GS-9350 150 mg
 - 11-fold above the protein binding-adjusted IC₉₅ (44.5 ng/mL)
 - Low within-subject variability (15% CV)

Bars represent geometric mean (± 95% CI)
QUAD Study

- GS 9350/elvitegravir/TDF/FTC (QUAD – fixed dose combination) vs. EFV/TDF/FTC (fixed dose combination).
- Phase II randomized double blind
- 75 patients with 2:1 randomization
- Actively recruiting.
- Studies comparing ATV/r with ATV/9350 are planned
Preclinical and Early Clinical Evaluation of SPI-452, a New Pharmacokinetic Enhancer (PKE)

S. Gulnik, M. Eisenstat, E. Afonina, D. Ludtke, J. Erickson, R. Dagger, B. Wynne, R. Guttendorf *
Study 0452-002: Proof of Clinical Concept
SPI-452 Enhances Atazanavir Exposure (C_{24})

Atazanavir Mean C_{24} Enhancement

Day -7 Day 15 Day 16

Boosting Ratio: 3 5 9 4 8 13

ATV alone
25 mg SPI-452
50 mg SPI-452
200 mg SPI-452
Alternatives To NRTI in first and second line treatment

- Resistance
- Mitochondrial toxicity
- Lactic acidosis
Alternatives to NRTI in Naïve Patients or 2nd Line when NRTI resistance is HIGH

- LPV/r plus raltegravir (vs. LPV/r plus TDF/FTC)
 - Open-label study fully enrolled (N = 206)
- DRV/r plus raltegravir
 - Single arm pilot in ACTG
 - Small comparative study on-going
 - Large comparative study planned in Europe.
- Atazanavir plus raltegravir (no ritonavir)
- CCR5 plus boosted PI (e.g. Vicriviroc + ATV/r)
ATV BID + RAL BID pharmacokinetics

- 3 step PK study: RAL 400 BID, then ATV 300 BID, then both
- N=22, healthy volunteers

<table>
<thead>
<tr>
<th>Pharmacokinetic Parameter</th>
<th>ATV BID Day 12 (N=22)</th>
<th>ATV+RAL BID Day 26 (N=19)</th>
<th>Ratios of Adjusted Geometric Means (ATV+RAL/ATV BID) Point Estimate (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax (ng/mL) – Geometric Mean (%CV) Range</td>
<td>5434 (19) (3150 – 7690)</td>
<td>4817 (21) (2780 – 6290)</td>
<td>0.887 (0.835, 0.941)</td>
</tr>
<tr>
<td>AUC(0-12) (ng•h/mL) – Geometric Mean (%CV) Range</td>
<td>30906 (21) (19539 – 45957)</td>
<td>25579 (25) (12065 – 39179)</td>
<td>0.830 (0.777, 0.886)</td>
</tr>
<tr>
<td>Cmin (ng/mL) – Geometric Mean (%CV) Range</td>
<td>1166 (34) (495 – 2130)</td>
<td>817 (36) (250 – 1550)</td>
<td>0.710 (0.647, 0.779)</td>
</tr>
<tr>
<td>C0 (ng/mL) – Geometric Mean (%CV) Range</td>
<td>1468 (34) (668 – 2810)</td>
<td>1148 (37) (469 – 2160)</td>
<td>0.779 (0.716, 0.846)</td>
</tr>
<tr>
<td>Tmax (h) – Median (Min, Max)</td>
<td>2.0 (2.0, 4.0)</td>
<td>2.0 (1.0, 4.0)</td>
<td>–</td>
</tr>
</tbody>
</table>

Zhu L, et al. 16th CROI, Montreal 2009, #696
ATV BID + RAL BID Pharmacokinetics

Table 3: Summary and Statistical Analyses for Raltegravir Pharmacokinetic Parameters

<table>
<thead>
<tr>
<th>Pharmacokinetic Parameter</th>
<th>Treatment</th>
<th>Ratios of Adjusted Geometric Mean (ATV+RAL/RAL) Point Estimate (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RAL BID Day 5 (N=22)</td>
<td>ATV+RAL BID Day 26 (N=19)</td>
</tr>
<tr>
<td>Cmax (ng/mL) – Geometric Mean (%CV) Range</td>
<td>634 (169) (252 – 9429)</td>
<td>952 (120) (254 – 6298)</td>
</tr>
<tr>
<td>AUC(0-12h) (ng•h/mL) – Geometric Mean (%CV) Range</td>
<td>2728 (129) (890 – 24871)</td>
<td>4539 (98) (1394 – 19186)</td>
</tr>
<tr>
<td>Cmin (ng/mL) – Geometric Mean (%CV) Range</td>
<td>60.2 (128) (14.5 – 566)</td>
<td>97.8 (154) (30.4 – 1219)</td>
</tr>
<tr>
<td>C0 (ng/mL) – Geometric Mean (%CV) Range</td>
<td>135 (70) (41.0 – 523)</td>
<td>158 (114) (33.1 – 1266)</td>
</tr>
<tr>
<td>Tmax (h) – Median (Min, Max)</td>
<td>3.0 (1.0, 6.0)</td>
<td>4.0 (2.0, 8.0)</td>
</tr>
</tbody>
</table>

ATV plus RAL Pilot

- ATV 300 BID with RAL 400 BID in treatment naïve patients
- Phase II randomized open label compared to ATV/r plus TDF/FTC
- 90 patients with 2:1 randomization
- Actively recruiting.
- Simplification study – with different dose – recently reported
Vicriviroc plus ATV/r

- Vicriviroc 30 mg QD plus ATV/r (300/100) QD in treatment naïve patients with R5 virus
 - CD4 ≥ 200 cells/mm³
- Phase II randomized open label compared to ATV/r plus TDF/FTC
- 200 patients with 1:1 randomization
- Actively recruiting.
Switching Therapy in Suppressed Patients

- Simplification
- Lessen toxicity
- Improve tolerability
- Decrease cost?
SwitchMRK 1 and 2: Randomized Comparison of Continued LPV/r vs. switch to RAL in suppressed Patients

Joseph Eron*¹, Jaime Andrade², Roberto Zajdenverg³, Cassy Workman⁴, David A. Cooper⁵, Benjamin Young⁶, Xia Xu⁷, Bach-Yen Nguyen⁷, Randi Leavitt⁷, and Peter Sklar⁷

¹University of North Carolina, Chapel Hill, NC, USA; ²Antinguo Hospital Civil de Guadalajara, Guadalajara, Mexico; ³Hospital Escola Sao Francisco de Assis, Rio de Janeiro, Brazil; ⁴AIDS Research Initiative, Darlinghurst, Australia; ⁵University of New South Wales, Sydney, Australia; ⁶Denver Infectious Disease Consultants, Denver, CO, USA; and ⁷Merck Research Laboratories, West Point, PA, USA
SWITCHMRK 1 and 2 (P032 & 033)
Study Design

- Identical, multicenter, double-blind, randomized, active-controlled studies

- Study population
 - Well controlled on a stable LPV/r regimen (b.i.d.) in combination with at least 2 NRTIs (and no other active PI) for ≥ 3 months
 - HIV RNA <50 copies/mL (US PCR) or <75 copies/mL (bDNA)
 - Patients were not required to be intolerant of LPV/r
 - Patients with prior virologic failure were not excluded
 - No limit on number of prior ART regimens
 - No lipid lowering therapy for at least 12 weeks

- Randomized (1:1) to continue LPV/r or switch to RAL
SWITCHMRK 1 and 2 (P032 & 033)
Study Design (2)

- Primary endpoints
 - Mean % change in lipids at week 12
 - Total-C, Triglycerides, non-HDL-C, and LDL-C
 - Proportion of patients with viral load <50 copies/mL at Wk 24
 - Non-completer = Failure approach (NC=F)
 - Noninferiority hypothesis with 12% margin
 - Safety and tolerability
Protocols 032, 033
Patient Disposition

174\(\dagger\) Switched to RAL*
25 (14.4%) Discontinued\(\dagger\) due to:
 3 - Lack of efficacy
 7 - Adverse Experience
 9 - Withdrew consent
 4 - Physician decision
 2 - Other events \(^1\)

174\(\dagger\) Remained on LPV/r*
17 (9.8%) Discontinued\(\dagger\) due to:
 1 - Lack of efficacy
 3 - Adverse Experience
 6 - Withdrew consent
 2 - Physician decision
 5 - Other events \(^2\)

176\(\dagger\) Switched to RAL*
10 (5.7%) Discontinued\(\dagger\) due to:
 4 - Lack of efficacy
 0 - Adverse Experience
 6 - Withdrew consent
 2 - Physician decision
 1 - Other events \(^3\)

178\(\dagger\) Remained on LPV/r*
6 (3.4%) Discontinued\(\dagger\) due to:
 2 - Lack of efficacy
 0 - Adverse Experience
 1 - Withdrew consent
 1 - Physician decision
 2 - Other events \(^4\)

\(^1\)RAL: Deviation from protocol (1), Other (1)
\(^2\)LPV/r: Lost to follow-up (4), Deviation from protocol (1)
\(^3\)RAL: Deviation from protocol (1)
\(^4\)LPV/r: Lost to follow-up (1), Deviation from protocol (1)
Protocols 032, 033
Patient Baseline Characteristics (2)

<table>
<thead>
<tr>
<th></th>
<th>Protocol 032</th>
<th>Protocol 033</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RAL*</td>
<td>LPV/r*</td>
</tr>
<tr>
<td># Patients Treated</td>
<td>N = 174</td>
<td>N = 174</td>
</tr>
<tr>
<td>% with vRNA ≤ 50 copies/mL</td>
<td>94.3</td>
<td>92.5</td>
</tr>
<tr>
<td>Mean CD4 count (cells/μl)</td>
<td>478</td>
<td>508</td>
</tr>
<tr>
<td>% on LPV/r ≤ 1 yr</td>
<td>16.7</td>
<td>17.8</td>
</tr>
<tr>
<td>Median yrs of prior ART (min, max)</td>
<td>3.3 (0.3, 22.3)</td>
<td>3.6 (0.5, 20.2)</td>
</tr>
<tr>
<td>Median # of prior ART (min, max)</td>
<td>5.0 (4.0, 16.0)</td>
<td>5.0 (2.0,15.0)</td>
</tr>
</tbody>
</table>

*In combination with background antiretroviral therapy.
Protocols 032, 033
Lipids-Mean Percent Change from Baseline at Week 12

Median Percent Change **Not prespecified for test**
In P032, 149 patients on RAL had HIV RNA < 50 copies/mL at Week 12; 134/149 (90%) remained suppressed (< 50 copies/mL) at Week 24.

152 patients on LPV/r had HIV RNA < 50 copies/mL at Week 12; 145/152 (95%) remained suppressed (< 50 copies/mL) at Week 24.

In P033, 157 patients on RAL had HIV RNA < 50 copies/mL at Week 12; 148/157 (94%) remained suppressed (< 50 copies/mL) at Week 24.

167 patients on LPV/r had HIV RNA < 50 copies/mL at Week 12; 161/167 (96%) remained suppressed (< 50 copies/mL) at Week 24.
Protocols 032, 033
Confirmed Virologic Failures

<table>
<thead>
<tr>
<th></th>
<th>Protocol 032</th>
<th>Protocol 033</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAL†</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>LPV/r†</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>>400 copies/mL</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>>50 copies/mL</td>
<td>13</td>
<td>19</td>
</tr>
</tbody>
</table>

†In combination with background antiretroviral therapy
*Virologic failure required confirmed viral rebound at least 1-week apart

Based upon post-hoc data collection:

- 84% (27/32) of patients with confirmed VF (>50 c/mL) in the RAL group reported that their regimen at study entry was not their 1st ART regimen
 - 66% (18/27) reported a history of VF on prior regimen(s)
PN033 Confirmed Failures

<table>
<thead>
<tr>
<th>Study Drug</th>
<th>Virologic Failures (>400/ml)</th>
<th>Study drug mutations (InSTI or PI*)</th>
<th>RTI mutations†</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAL</td>
<td>9</td>
<td>G140G/S, Q148R, Q148Q/H, N155N/H</td>
<td>D67D/G, M184V, T215T/I; Y181C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N155H</td>
<td>M184M/V; K103R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N155H, Q148Q/R, Y143Y/C</td>
<td>D67D/N, K70K/R, M184V, K219Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q148H, G140S</td>
<td>M184V; K103N, P225H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G140G/S, Q148R, Q148Q/H, N155N/H,</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q148Q/R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N155H</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y143Y/S, Q148Q/R</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not done</td>
<td>Not done</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A71V, V82A, L90M</td>
<td>Y181C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V11V/I, L63P, V77I</td>
<td>None</td>
</tr>
</tbody>
</table>

*Data derived by population sequencing. All amino acid changes from baseline observed in any of multiple independent PCR reactions are listed without regard to linkage.
†RTI mutations do not necessarily reflect concurrent OBT
Protocols 032, 033
Combined Analyses of the Subgroups (OF)

<table>
<thead>
<tr>
<th>Subpopulation</th>
<th>RAL</th>
<th>LPV/r</th>
<th>Difference in Percent Response†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>% (95% CI)</td>
<td>n/N</td>
</tr>
<tr>
<td>Total</td>
<td>293/327</td>
<td>89.6 (85.8, 92.7)</td>
<td>319/338</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>60/62</td>
<td>96.8 (88.8, 99.6)</td>
<td>74/80</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>24/25</td>
<td>96.0 (79.6, 99.9)</td>
<td>19/20</td>
</tr>
</tbody>
</table>

† The 95% CIs were calculated using Miettinen and Nurminen's method.
N = Number of patients in each treatment group; n = Number of patients in each subcategory.
Integrase Inhibitor Resistance

• Raltegravir:
 • Resistance occurs thru mutation in the enzyme – in and round active site
 • Two major pathways (N155 or Q148): Q148H/G140S most common.
 • Most have multiple mutations

BENCHMRK 1 & 2: Evolution From N155 to Q148 Mutations Over Time

First Genotype (n = 64)
- 155: 45%
- 148: 27%
- 143: 18%
- Mixed: 18%
- 92: 53%

Second Genotype (n = 51)
- 155: 18%
- 148: 53%
- 143: 18%

Mutations can confer cross resistance to structurally diverse integrase inhibitors.
Options for Second-line Therapy

- LPV/r and 2 NRTI
- Darunavir/r and 2 NRTI
- Boosted protease inhibitor alone
 - Data from Lilongwe on second line
- Boosted PI plus an alternative to NRTI
 1. etravirine
 2. maraviroc
 3. Raltegravir
 4. More than one agent?
What about Third Line Therapy?

- Three class failure – NRTI, NNRTI, PI
- Aim for virologic suppress
TRIO Study: RAL + ETR + DRV/RTV
Highly Effective As 3 Active Agents

- Multicenter, phase II study of DRV/RTV plus ETR plus RAL (N = 103); addition of NRTIs, enfuvirtide at discretion of physician
 - Inclusion criteria included ≤ 3 DRV and ≤ 3 ETR RAM
 - 59% of patients had < 1 active agent in OBR, as assessed by GSS
- 90% of patients attained HIV-1 RNA < 50 copies/ml at Week 24 (95% CI: 85% to 96%)
- Median increase in CD4+ = 99 cells/mm3 (IQR: 32-147)
- Of 10 patients with detectable HIV-1 RNA at Week 24, only 3 had confirmed HIV-1 RNA > 400 copies/mol
- 2 possibly drug-related clinical grade 4 AEs; only 1 led to treatment discontinuation

Impact of New Agents on Treatment Strategy

● Treatment-naive patients
 – May improve tolerability and expand target populations
 – Novel combinations that spare nucleosides or ritonavir can be explored

● Second line therapy
 – Better options if high level NRTI resistance or no resistance testing

● Switch for complex or poorly tolerated regimens
 – Opportunity for improvement?

● Third Line Therapy
 – High likelihood of success
 – When will new agents be available to you.
Back up Slides

No Need to print out!
Evolution of National HIV Treatment Guidelines: Appropriate Treatment Goals After Virologic Failure

Prior Exposure and Resistance

- **Limited**
 - Suppress HIV RNA maximally

- **Intermediate**
 - (Category did not exist)

- **Extensive**
 - Virologic Suppression Often Difficult to Achieve
 - Preserve Immunologic Function and Prevent Clinical Progression
 - Re-suppress HIV RNA maximally

DHHS Guideline Update

- **November 2003**
- **April 2005**
- **October 2006**
- **January 2008**

CCR5 Inhibitor Virologic Failure

- Two mechanisms
 - Emergence of pre-existing X4 or dual tropic variants
 - MOTIVATE 1 wk 48, ~ 50% of patients in QD arm and ~ 63% of BID arm with virologic failure had D/M or X4 virus
 - “Cross resistant” by definition
 - No immunologic consequences observed so far
 - HIV remains R5 but uses receptor with compound bound
 - Difficult to detect without phenotype
 - Analysis of MVC resistance in 36 patients with R5 virus at failure
 - 43% had evidence of MVC resistance
 - Cross resistance between R5 inhibitors may or may not occur
Integrase Inhibitor Resistance

• Raltegravir:
 • Resistance occurs thru mutation in the enzyme – in and round active site
 • Two major pathways (N155 or Q148): *Q148H/G140S* most common.
 • Most have multiple mutations

BENCHMRK 1 & 2: Evolution From N155 to Q148 Mutations Over Time

First Genotype (n = 64)
- 45% 155
- 27% 148
- 143
- Mixed
- 92

Second Genotype (n = 51)
- 18%
- 53%

Mutations can confer cross resistance to structurally diverse integrase inhibitors

IC₅₀ ratio of mutants vs. WT HIV-1 in infectivity assay

Wei et al CROI 2007, Hazuda et al DRW 2007
Integrase Inhibitors

- **Raltegravir**
 - Potent, rapid suppression; very well tolerated over 48 wks
 - 97% of subjects in BENCHMRK had initial response
 - High risk of resistance in treatment failure
 - Twice daily dosing with modest drug interactions
 - Metabolized by glucuronidation

- **Elvitegravir**
 - Potent in phase IIa and IIb studies
 - Phase III study started
 - Cross resistance likely with raltegravir
 - Once daily but requires RTV co-administration.

A high likelihood of success is dependent on additional active agents